Β

Β

Β

Get Real time Doubt solving from 8pm to 12 am!

Examples

Example 1

Example 2 (i)

Example 2 (ii) Important

Example 3

Example 4

Example 5 Important

Example 6 (i)

Example 6 (ii) Important

Example 7 Deleted for CBSE Board 2023 Exams

Example 8 Important Deleted for CBSE Board 2023 Exams

Example 9 Deleted for CBSE Board 2023 Exams

Example 10 Deleted for CBSE Board 2023 Exams

Example 11 Important Deleted for CBSE Board 2023 Exams

Example 12

Example 13 (i) Important You are here

Example 13 (ii)

Example 14 Important

Example 15

Example 16 Important Deleted for CBSE Board 2023 Exams

Last updated at Sept. 3, 2021 by Teachoo

Example, 13 Find the modulus and argument of the complex numbers: (i) (1 + π)/(1 β π) , First we solve (1 + π)/(1 β π) Let π§ = (1 + π)/(1 β π) Rationalizing the same = (1 + π)/(1 β π) Γ (1 + π)/(1 + π) = (( 1 + π ) ( 1 + π ))/("(" 1 β π ) (1 + π )) Using (a β b) (a + b) = a2 β b2 = ( 1+ π )2/( ( 1 )2 β ( π )2) Using ( a + b )2 = a2 + b2 + 2ab = ((1)2 + (π)2 + 2π)/( (1)2 β (π)2) Putting i2 = β 1 = ((1)2 + (β1) + 2π)/( 1β (β 1) ) = (1 β1 + 2π)/( 1 + 1) = ( 2π)/( 2) = π = 0 + π Hence, π§ = 0 + π Method 1 To calculate modulus of z z = 0 + i Complex number z is of the form x + πy Hence x = 0 and y = 1 Modulus of z = β(π₯^2+π¦2) = β(( 0 )2+(1)2) = β(0+1) = β1 = 1 Modulus of z = 1 Method 2 To calculate modulus of z We have , z = 0 + π Let z = r ( cos ΞΈ + π sin ΞΈ ) Here r is modulus, and ΞΈ is argument From (1) and (2) 0 + π = r ( cos ΞΈ + π sin ΞΈ ) 0 + π = r cos ΞΈ + πr sin ΞΈ Comparing real part 0 = r cos ΞΈ Squaring both sides (0)2 = ( π cosβ‘ΞΈ )2 0 = r2 cos2 ΞΈ Adding (3) and (4) 0 + 1 = r2 cos2 ΞΈ + r2 sin2 ΞΈ 1=π2 (cos2 ΞΈ+sin2 ΞΈ) 1 = r2 (1) 1 = r2 1 = r β Modulus of z = 1 Finding argument 0 + π = r cos ΞΈ + πr sin ΞΈ Comparing real part 0 = r cos ΞΈ Put r = 1 0 = 1 Γ cos ΞΈ 0 = cos ΞΈ cos ΞΈ = 0 Hence, cos ΞΈ = 0 & sin ΞΈ = 1 Since, sin ΞΈ is positive and cos ΞΈ is zero Hence, ΞΈ lies in Ist quadrant So, Argument = 90Β° = 90 Γ π/180 = π/2 Hence, argument of z = π/2