Check sibling questions

Example 29 - Prove cos2 x + cos2 (x + pi/3) + cos2 (x - pi/3)

Example 29 - Chapter 3 Class 11 Trigonometric Functions - Part 2
Example 29 - Chapter 3 Class 11 Trigonometric Functions - Part 3 Example 29 - Chapter 3 Class 11 Trigonometric Functions - Part 4 Example 29 - Chapter 3 Class 11 Trigonometric Functions - Part 5

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Example 22 Prove that cos2 π‘₯+cos2 (π‘₯+πœ‹/3) + cos2 (π‘₯βˆ’πœ‹/3) = 3/2 Lets first calculate all 3 terms separately We know that cos 2x = 2 cos2 x βˆ’ 1 cos 2x + 1 = 2cos2 x π‘π‘œπ‘ β‘γ€–2π‘₯ + 1γ€—/2 = cos2 x So, cos2 x = πœπ¨π¬β‘γ€–πŸπ’™ + πŸγ€—/𝟐 Replacing x with ("x + " πœ‹/3) is about cos2 ("x" +πœ‹/3) = cos⁑〖2(π‘₯ + πœ‹/3)+1γ€—/2 = cos⁑〖(2π‘₯ + 2πœ‹/3) + 1γ€—/2 Similarly, Replacing x with ("x βˆ’" πœ‹/3) in cos2 x = cos⁑〖2π‘₯ + 1γ€—/2 cos2 ("x" βˆ’πœ‹/3) = cos⁑〖2(π‘₯ βˆ’ πœ‹/3)+ 1γ€—/2 = cos⁑〖(2π‘₯ βˆ’ 2πœ‹/3)+ 1γ€—/2 Solving L.H.S cos2 x + cos2 (π‘₯+ πœ‹/3) + cos2 (π‘₯βˆ’πœ‹/3) = (1 + cos⁑2π‘₯)/2 + (1 + cos⁑(2π‘₯ + 2πœ‹/3))/2 + (1 + cos⁑(2π‘₯ βˆ’ 2πœ‹/3))/2 = 1/2 [1+cos⁑〖2π‘₯+1+π‘π‘œπ‘ (2π‘₯+2πœ‹/3)+1+π‘π‘œπ‘ (2π‘₯βˆ’2πœ‹/3)γ€— ] = 1/2 [3+cos⁑〖2π‘₯+π‘π‘œπ‘ (2π‘₯+2πœ‹/3)+π‘π‘œπ‘ (2π‘₯βˆ’2πœ‹/3)γ€— ] = 1/2 [3+cos⁑〖2π‘₯+2π‘π‘œπ‘ ((2π‘₯ + 2πœ‹/3 + 2π‘₯ βˆ’ 2πœ‹/3)/2).π‘π‘œπ‘ ((2π‘₯ + 2πœ‹/3 βˆ’(2π‘₯ βˆ’ 2πœ‹/3))/2)γ€— ] Using cos x + cos y = 2 cos ((π‘₯ + 𝑦)/2). cos ((π‘₯ βˆ’ 𝑦)/2) Replace x by ("2" π‘₯" + " 2πœ‹/3) & y by ("2x βˆ’ " 2πœ‹/3) = 1/2 [3+cos⁑〖2π‘₯+2π‘π‘œπ‘ ((4π‘₯ + 0)/2).π‘π‘œπ‘ ((0 + 4πœ‹/3)/2)γ€— ] = 1/2 [3+cos⁑〖2π‘₯+2π‘π‘œπ‘ (4π‘₯/2).π‘π‘œπ‘ ((4πœ‹/3)/2)γ€— ] = 1/2 [3+cos⁑〖2π‘₯+2 cos⁑2π‘₯ cos⁑〖2πœ‹/3γ€— γ€— ] = 1/2 [3+cos⁑〖2π‘₯+2 cos⁑2π‘₯ cos⁑(πœ‹βˆ’πœ‹/3) γ€— ] = 1/2 [3+cos⁑〖2π‘₯+2 cos⁑2π‘₯ γ€— (γ€–βˆ’cos〗⁑(πœ‹/3) ) ] = 1/2 [3+cos⁑〖2π‘₯+2 cos⁑2π‘₯ γ€— (βˆ’1/2) ] (As cos (Ο€ βˆ’ πœƒ) = βˆ’cos πœƒ) = 1/2 [3+cos⁑〖2π‘₯βˆ’2 Γ—1/2Γ—cos⁑2π‘₯ γ€— ] = 1/2 [3+cos⁑〖2π‘₯βˆ’cos⁑2π‘₯ γ€— ] = 1/2 [3+0] = 3/2 = R.H.S. Hence, L.H.S. = R.H.S. Hence Proved

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.