Last updated at May 29, 2018 by Teachoo
Transcript
Ex 9.3, 29 If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are A ((A+G)(A G)) Let a & b be two numbers We need to show that the numbers are A ((A+G)(A G)) i.e. a = A + (( + )( )) b = A (( + )( )) Now we know that Arithmetic mean =A = ( a+b)/2 Geometric mean =G= ab Putting value of A and G in RHS we can prove it is equal to a and b Solving A (( + )( )) = A ( 2 2) Putting A = ( + )/2 & G = = (( + )/2) ((( + )/2)^2 ( )2) = (( + )/2) ((( + )2 )/4 ) = (( + )/2) (( 2+ 2+2 4 )/4) = (( + )/2) (( 2 + 2 2 )/4) = ( + )/2 (( )2/4) = ( + )/2 ((( )/2)^2 ) = ( + )/2 ( )/2 Thus, A + (( + )( )) = a & A (( + )( )) = b Hence proved.
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3 Important
Ex 9.3, 4
Ex 9.3, 5 (a)
Ex 9.3, 5 (b) Important
Ex 9.3, 5 (c)
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14 Important
Ex 9.3, 15
Ex 9.3, 16 Important
Ex 9.3, 17 Important
Ex 9.3, 18 Important
Ex 9.3, 19
Ex 9.3, 20
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 Important
Ex 9.3, 24
Ex 9.3, 25
Ex 9.3, 26 Important
Ex 9.3, 27 Important
Ex 9.3, 28
Ex 9.3, 29 Important You are here
Ex 9.3, 30 Important
Ex 9.3, 31
Ex 9.3, 32 Important
Ex 9.3
About the Author