Slide15.JPG Slide16.JPG Slide17.JPG Slide18.JPG Slide19.JPG

You saved atleast 2 minutes of distracting ads by going ad-free. Thank you :)

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Ex 12.1, 5 A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter l of the hemisphere is equal to edge of the cube. Determine the surface area of the remaining solid. Given that Diameter of the hemisphere is equal to the edge of the cube So, Diameter = Side of cube = l Here, base of hemisphere would not be included in the total solid area of wooden cube . Now, Surface area of solid = Area of cube + Curved surface area of hemisphere – Base area of hemisphere Area of cube Here, side = l Area of cube = 6(Side)2 = 6l2 Curved surface area of hemisphere Diameter of hemisphere = l ∴ Radius = r = (Diameter )/2 = 𝒍/𝟐 Curved Surface area of hemisphere = 2𝜋𝑟2 = 2𝜋(𝑙/2)^2 =2𝜋 𝑙^2/4 = (𝜋𝑙^2)/2 Curved Surface area of hemisphere = 2𝜋𝑟2 = 2𝜋(𝑙/2)^2 = 2𝜋 𝑙^2/4 = (𝝅𝒍^𝟐)/𝟐 Base area of hemisphere Base of hemisphere is a circle with Radius = Radius of hemisphere = r = 𝒍/𝟐 Base area of hemisphere = 𝝅𝒓𝟐 = 𝜋(𝑙/2)^2 = 𝜋 𝑙^2/4 = (𝝅𝒍^𝟐)/𝟒 Now, Surface area of solid = Area of cube + Curved surface area of hemisphere – Base area of hemisphere = 6l2 + (𝝅𝒍^𝟐)/𝟐 – (𝝅𝒍^𝟐)/𝟒 = 6l2 + (2𝜋𝑙^2 − 𝜋𝑙^2)/4 = 6l2 + (𝝅𝒍^𝟐)/𝟒 = l2 (6 + 𝜋/4) = l2 ((6(4) + 𝜋)/4) = l2 ((24 + 𝜋)/4) = 𝟏/𝟒 l2 (𝝅 + 24) Hence, Surface area of solid = 1/4 l2 (𝜋 + 24)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo