Ex 10.2, 10 - Prove that angle between two tangents drawn - Theorem 10.1: Tangent perpendicular to radius (proof type)

  1. Chapter 10 Class 10 Circles
  2. Serial order wise
Ask Download

Transcript

Ex 10.2,10 Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre. Given: A circle with center O. Tangents PA and PB drawn from external point P To prove: APB + AOB = 180 Proof: In quadrilateral OAPB OAP + APB + OBP + AOB = 360 Putting values of angles 90 + APB + 90 + AOB = 360 180 + APB + AOB = 360 APB + AOB = 360 180 APB + AOB = 180 Hence proved

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.