Get Real time Doubt solving from 8pm to 12 am!

Chapter 10 Class 10 Circles

Serial order wise

Last updated at May 29, 2018 by Teachoo

Ex 10.2,7 Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle. Given: Let two concentric circles be C1 & C2 with center O AB be chord of the larger circle C2 which touches the smaller circle C1 at point P To find: Length of AB Solution: Connecting OP, OA and OB OP = Radius of smaller circle = 3 cm OA = OB = Radius of larger circle = 5 cm Since AB is tangent to circle C1 OP ⊥ AB ∴ ∠ OPA = ∠ OPB = 90° Using Pythagoras theorem (Hypotenuse)2 = (Height)2 + (Base)2 Hence, AB = AP + PB = 4 + 4 = 8 cm