Check sibling questions

Ex 9.1, 2 - A tree breaks due to storm and the broken part - Ex 9.1

EX 9.1, 2 - Part 2
EX 9.1, 2 - Part 3

This video is only available for Teachoo black users

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!


Transcript

Ex 9.1 , 2 A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree. Let, the broken part of tree be AC It is given that, Distance between foot of the tree B and point C = 8m So, BC = 8m Also, broken parts of tree makes an angle 30° with ground So, ∠C = 30° We need to find height of tree Height of tree = Height of broken part + height of remaining tree Height of tree = AB + AC Since, Tree was vertical to ground So, ∠ ABC = 90° So, Height of tree = AC + AB = 16/√3 + 8/√3 = 24/√3 Multiplying √3 in numerator and denominator = 24/√3 × √3/√3 = 24 × √3/3 = 8√3 Hence, height of tree is 8√3 m

Ask a doubt (live)
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.