Last updated at April 16, 2024 by Teachoo
Ex 8.1, 2 In figure , find tan P β cot R. Finding sides of triangle In right β π·πΈπΉ, Using Pythagoras theorem (Hypotenuse)2 = (Height)2 + (Base)2 PR2 = PQ2 + QR2 132 = 122 + QR2 169 = 144 + QR2 169 β 144 = QR2 25 = QR2 QR2 = 25 QR = βππ QR = β(5^2 ) QR = 5 Thus, QR = 5 cm Finding tan P tan P = (π πππ πππππ ππ‘π π‘π β π)/(π πππ ππππππππ‘ π‘πβ π) = ππ /ππ = π/ππ Finding cot R For cot R , Lets first find tan R tan R = (π πππ πππππ ππ‘π π‘π β π )/(π πππ ππππππππ‘ π‘πβ π ) = ππ/ππ = ππ/π Hence, cot R = 1/tanβ‘γ π γ = π/ππ Now, tan P β cot R = 5/12β5/12 = 0