Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at Dec. 8, 2016 by Teachoo

Transcript

Example 10 If the points A(6, 1), B(8, 2), C(9, 4) and D(p, 3) are the vertices of a parallelogram, taken in order, find the value of p. Let the points be A(6, 1) , B(8, 2) C(9, 4) , D(p, 3) We know that diagonals of parallelogram bisect each other So, O is the mid−pint of AC & BD ∴ We find x co−ordinate of O from both AC & BD Finding mid−point of AC, We have to find x co−ordinate of O x−coordinate of O = (𝑥1 + 𝑥2)/2 Where x1 = 6 , x2 = 9 , Putting values for x−coordinate x−coordinate of O = (6 + 9)/2 = 15/2 Finding mid−point of BD, We have to find x co−ordinate of O x−coordinate of O = (𝑥1 + 𝑥2)/2 Where x1 = 8 , x2 = p , Putting values for x−coordinate x−coordinate of O = (8+ 𝑝)/2 Comparing (1) & (2) 15/2 = (8+ 𝑝)/2 15 = 8 + p 15 = 8 + p 15 – 8 = p 7 = p p = 7 Hence, p = 7

Section Formula- Finding coordinates of a point in a quadrilateral

Chapter 7 Class 10 Coordinate Geometry

Concept wise

- Distance Formula
- Equidistant points
- Checking points collinear or not
- Type of triangle formed
- Type of quadrilateral formed
- Section Formula- Finding coordinates
- Section Formula- Finding coordinates of a point in a quadrilateral
- Finding ratio
- Area of triangle
- Given area, finding k
- Area of quadrilateral

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.