Get Real time Doubt solving from 8pm to 12 am!

Examples

Example 1

Example 2 Important

Example 3

Example 4

Example 5

Example 6 Important You are here

Example 7

Example 8 Important

Example 9

Example 10

Example 11 Important

Example 12

Example 13

Example 14 Important

Example 15

Example 16 Important

Example 17

Example 18 Important

Example 19

Surface Area and Volume Formulas Important

Chapter 13 Class 9 Surface Areas and Volumes

Serial order wise

Last updated at May 29, 2018 by Teachoo

Example 6 A corn cob (see Fig. ), shaped somewhat like a cone, has the radius of its broadest end as 2.1 cm and length (height) as 20 cm. If each 1 cm2 of the surface of the cob carries an average of four grains, find how many grains you would find on the entire cob. We know that grains are on the curved surface Area First we find the area of corn cob which is in the form of a cone. Curved Surface Area of corn cob = πrl r = 2.1 cm, h = 20cm Let slant height be l We know that l2 = h2 + r2 l2 = "(20)2 + (2.1)2" l2 = "400 + 4.4" 1 l2 = "40" 4.41 l = √("40" 4.41) l = √("20.112" ) l = 20.11 cm Now, Area of corn cob = Curved Surface area of cone = πrl = 22/7 × 2.1 × 20.11 cm2 = 132.726 cm2 = 132.73 cm2 (approx.) Number of grains on 1 cm2 of the surface of corn cob = 4 Number of grains on 132.73 cm2 of the surface of corn cob = 132.73 × 4 = 530.92 = 531 (approx) So, there would be approximately 531 grains of corn on the cob.