Ex 3.7, 7 (Optional) - Chapter 3 Class 10 Pair of Linear Equations in Two Variables - Part 5

Ex 3.7, 7 (Optional) - Chapter 3 Class 10 Pair of Linear Equations in Two Variables - Part 6
Ex 3.7, 7 (Optional) - Chapter 3 Class 10 Pair of Linear Equations in Two Variables - Part 7
Ex 3.7, 7 (Optional) - Chapter 3 Class 10 Pair of Linear Equations in Two Variables - Part 8
Ex 3.7, 7 (Optional) - Chapter 3 Class 10 Pair of Linear Equations in Two Variables - Part 9


Transcript

Question 7 Solve the following pair of linear equations: (ii) ax + by = c bx + ay = 1 + c Solving equations ax + by = c Multiplying both sides by a a (ax + by) = ac a2x + aby = ac bx + ay = 1 + c Multiplying both sides by b b (bx + ay) = b (1 + c) b2x + aby = b + bc Hence, the equations are a2x + aby = ac …(1) b2x + aby = b + bc …(2) From equation (1) a2x + aby = ac aby = ac − a2x y = (𝑎𝑐 − 𝑎^2 𝑥)/𝑎𝑏 Putting y = (𝑎𝑐 − 𝑎^2 𝑥)/𝑎𝑏 in equation (2) b2𝑥 + aby = b + bc b2𝑥 + ab((𝑎𝑐 − 𝑎^2 𝑥)/𝑎𝑏) = b + bc b2𝑥 + ac − a2𝑥 = b + bc b2𝑥 − a2𝑥 = b + bc − ac (b2 − a2) 𝑥 = b + c (b − a) 𝑥 = (𝑏 + 𝑐(𝑏 − 𝑎))/(𝑏2 − 𝑎2) 𝑥 = (𝑏 − 𝒄(𝒂 − 𝒃))/(𝑏2 − 𝑎2) 𝑥 = (𝑏 − 𝑐(𝑎 − 𝑏))/(−(𝒂𝟐 − 𝒃𝟐) ) 𝑥 = (−(−𝒃 + 𝒄(𝒂 − 𝒃)))/(−(𝑎2 − 𝑏2) ) 𝑥 = (−𝑏 + 𝑐(𝑎 − 𝑏))/(𝑎2 − 𝑏2) 𝒙 = (𝒄(𝒂 − 𝒃) − 𝒃)/(𝒂𝟐 − 𝒃𝟐) Put 𝑥 = ( 𝑐(𝑎 − 𝑏) − 𝑏)/(𝑎2 − 𝑏2) in equation (1) a2𝑥 + aby = ac a2((𝒄(𝒂 − 𝒃) − 𝒃)/(𝒂𝟐 − 𝒃𝟐)) + aby = ac a2((𝒄(𝒂 − 𝒃) − 𝒃)/(𝒂𝟐 − 𝒃𝟐)) + aby = ac a2((𝑐(𝑎 − 𝑏) − 𝑏)/(𝑎2 − 𝑏2)) + aby = ac a2((𝑎𝑐 − 𝑐𝑏 − 𝑏)/(𝑎2 − 𝑏2)) + aby = ac (𝒂^𝟐 (𝒂𝒄 − 𝒄𝒃 − 𝒃))/(𝑎2 − 𝑏2) + aby = ac (𝑎^3 𝑐 − 𝑎^2 𝑐𝑏 − 𝑎^2 𝑏)/(𝑎2 − 𝑏2) + aby = ac Multiplying a2 – b2 both sides (a2 – b2) (𝑎^3 𝑐 − 𝑎^2 𝑐𝑏 − 𝑎^2 𝑏)/(𝑎2 − 𝑏2) + (a2 – b2) aby = (a2 – b2) ac 𝒂𝟑𝒄 −𝒂𝟐𝒃𝒄 −𝒂𝟐𝒃 + (a2 – b2) aby = (a2 – b2) ac 𝑎3𝑐 −𝑎2𝑏𝑐 −𝑎2𝑏 + (a2 – b2) aby =𝒂^𝟑 𝒄−〖𝒂𝒃〗^𝟐 𝒄 (a2 – b2) aby =𝑎^3 𝑐−〖𝑎𝑏〗^2 𝑐 − 𝑎3𝑐+𝑎2𝑏𝑐+𝑎2𝑏 (a2 – b2) aby =−〖𝑎𝑏〗^2 𝑐 + 𝑎2𝑏𝑐+𝑎2𝑏 Dividing whole equation by ab (𝑎^2−〖 𝑏〗^2 )𝑎𝑏𝑦/𝑎𝑏 = (−𝑎𝑏2𝑐)/𝑎𝑏 + (𝑎^2 𝑏𝑐)/𝑎𝑏 + (𝑎^2 𝑏)/𝑎𝑏 (𝑎^2−〖 𝑏〗^2 )𝑦 = −bc + ac + a " " (𝑎^2−〖 𝑏〗^2 )𝑦" = ac − bc + a" " " (𝑎^2−〖 𝑏〗^2 )𝑦" = c(a − b) + a" y = (𝒄(𝒂 − 𝒃) + 𝒂)/(𝒂𝟐 − 𝒃𝟐) Thus, 𝒙 = (𝒄(𝒂 − 𝒃) − 𝒃)/(𝒂𝟐 − 𝒃𝟐) y = (𝒄(𝒂 − 𝒃) + 𝒂)/(𝒂𝟐 − 𝒃𝟐)

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.