## If tanβ‘A=3/4 , find the value of 1/sinβ‘A +1/cosβ‘A

Last updated at Oct. 19, 2020 by Teachoo

Transcript

Question 25 (Choice - 1) If tanβ‘π΄=3/4 , find the value of 1/sinβ‘π΄ +1/cosβ‘π΄ Given, tan A = 3/4 (ππππ πππππ ππ‘π π‘π πππππ π΄)/(ππππ ππππππππ‘ π‘π πππππ π΄) = 3/4 π΅πΆ/π΄π΅ = 3/4 Let BC = 3x & AB = 3x We find AC using Pythagoras Theorem In right triangle ABC Using Pythagoras theorem (AC)2 = (BC)2 + (AB)2 (AC)2 = (3x)2 + (4x)2 (AC)2 = 9x2 + 16x2 (AC)2 = 25x2 AC = β25π₯2 AC = 5x Now, sin A = (ππππ πππππ ππ‘π π‘π πππππ π΄)/π»π¦πππ‘πππ’π π sin A = π΅πΆ/π΄πΆ sin A = 3π₯/5π₯ sin A = π/π cos A = (ππππ ππππππππ‘ π‘π π΄)/π»π¦πππ‘πππ’π π cos A = π΄π΅/π΄πΆ cos A = 4π₯/5π₯ cos A = π/π Now, 1/sinβ‘π΄ +1/cosβ‘π΄ = 1/(3/5)+1/(4/5) = 5/3+5/4 = (5 Γ 4 + 5 Γ 3)/(3 Γ 4) = (20 + 15)/12 = ππ/ππ

CBSE Class 10 Sample Paper for 2021 Boards - Maths Standard

Question 1 (Choice - 1)

Question 1 (Choice - 2)

Question 2

Question 3

Question 4

Question 5 (Choice - 1)

Question 5 (Choice - 2)

Question 6

Question 7 (Choice - 1)

Question 7 (Choice - 2)

Question 8

Question 9 (Choice - 1)

Question 9 (Choice - 2)

Question 10

Question 11

Question 12

Question 13

Question 14

Question 15

Question 16 (Choice - 1)

Question 16 (Choice - 2)

Question 17

Question 18

Question 19

Question 20

Question 21

Question 22 (Choice - 1)

Question 22 (Choice - 2)

Question 23

Question 24

Question 25 (Choice - 1) You are here

Question 25 (Choice - 2)

Question 26

Question 27

Question 28 (Choice - 1)

Question 28 (Choice - 2)

Question 29

Question 30 (Choice - 1)

Question 30 (Choice - 2)

Question 31

Question 32

Question 33

Question 34 (Choice - 1)

Question 34 (Choice - 2)

Question 35

Question 36

Class 10

Solutions of Sample Papers for Class 10 Boards

- CBSE Class 10 Sample Paper for 2021 Boards - Maths Standard
- CBSE Class 10 Sample Paper for 2021 Boards - Maths Basic
- CBSE Class 10 Sample Paper for 2020 Boards - Maths Standard
- CBSE Class 10 Sample Paper for 2020 Boards - Maths Basic
- CBSE Class 10 Sample Paper for 2019 Boards
- CBSE Class 10 Sample Paper for 2018 Boards

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.