Ex 2.3
Ex 2.3, 1 (ii)
Ex 2.3, 1 (iii)
Ex 2.3, 1 (iv) Important
Ex 2.3, 2 (i) You are here
Ex 2.3, 2 (ii) Important
Ex 2.3, 2 (iii)
Ex 2.3, 3 (i)
Ex 2.3, 3 (ii) Important
Ex 2.3, 3 (iii) Important
Ex 2.3, 3 (iv)
Ex 2.3, 4 (i)
Ex 2.3, 4 (ii) Important
Ex 2.3, 4 (iii)
Ex 2.3, 4 (iv) Important
Ex 2.3, 5 (i)
Ex 2.3, 5 (ii) Important
Ex 2.3, 5 (iii) Important
Ex 2.3, 5 (iv)
Ex 2.3
Last updated at April 16, 2024 by Teachoo
Ex 2.3, 2 Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following cases: (i) p(x) = 2x3 + x2 – 2x – 1 , g(x) = x + 1 Finding remainder when 2x3 + x2 – 2x – 1 is divided by x + 1 Step 1: Put Divisor = 0 x + 1 = 0 x = –1 Step 2: p(x) = 2x3 + x2 – 2x – 1 Putting x = –1 p(–1) = 2(−1)3 + (−1)2 – 2(−1) – 1 = 2(–1) + 1 + 2 – 1 = –2 + 1 + 2 – 1 = 0 Thus, Remainder = p(–1) = 0 Since remainder is zero, x + 1 is a factor of 2x3 + x2 – 2x – 1