Check sibling questions

Solve for x: 1/((a + b + x)) = 1/a + 1/b + 1/x

[a ≠ 0, b ≠ 0, x ≠ 0, x ≠ –(a + b)]


Transcript

Question 23 (OR 2nd question) Solve for x: 1/((𝑎 + 𝑏 + 𝑥)) = 1/𝑎 + 1/𝑏 + 1/𝑥 [a ≠ 0, b ≠ 0, x ≠ 0, x ≠ –(a + b)] 1/((𝑎 + 𝑏 + 𝑥)) = 1/𝑎 + 1/𝑏 + 1/𝑥 1/((𝑎 + 𝑏 + 𝑥)) – 1/𝑥 = 1/𝑎 + 1/𝑏 (𝑥 − (𝑎 + 𝑏 + 𝑥))/(𝑎 + 𝑏 + 𝑥)𝑥 = 1/𝑎 + 1/𝑏 (𝑥 − 𝑎 − 𝑏 − 𝑥)/(𝑎 + 𝑏 + 𝑥)𝑥 = (𝑏 + 𝑎)/𝑎𝑏 (−(𝑎 + 𝑏))/(𝑎 + 𝑏 + 𝑥)𝑥 = ((𝑎 + 𝑏))/𝑎𝑏 (−1)/(𝑎 + 𝑏 + 𝑥)𝑥 = 1/𝑎𝑏 –ab = x(a + b + x) –ab = x(a + b) + x2 0 = x2 + x(a + b) + ab x2 + x(a + b) + ab = 0 Comparing with Ax2 + BX + C = 0 A = 1, B = (a + b), C = ab x = (−𝐵 ± √(𝐵^(2 )− 4𝐴𝐶) )/2𝐴 x = (−(𝑎 + 𝑏) ± √(〖(𝑎 + 𝑏)〗^(2 )− 4×1×𝑎𝑏) )/(2 × 1) x = (−(𝑎 + 𝑏) ± √(𝑎^2 + 𝑏^2 + 2𝑎𝑏 − 4𝑎𝑏) )/2 x = (−(𝑎 + 𝑏) ± √(𝑎^2 + 𝑏^2 − 2𝑎𝑏) )/2 x = (−(𝑎 + 𝑏) ± √((𝑎 − 𝑏)^2 ) )/2 x = (−(𝑎 + 𝑏) ± (𝑎 − 𝑏) )/2 So, x = (−(𝑎 + 𝑏) + (𝑎 − 𝑏) )/2 x = (−𝑎 − 𝑏 + 𝑎 − 𝑏)/2 x = (−2𝑏)/2 x = –b x = (−(𝑎 + 𝑏) − (𝑎 − 𝑏) )/2 x = (−𝑎 − 𝑏 − 𝑎+ 𝑏)/2 x = (−2𝑎)/2 x = –a

  1. Class 10
  2. Solutions of Sample Papers for Class 10 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo