Check sibling questions

Question 16 (OR 2 nd  question)

Find the value of k for which the points (3k – 1, k – 2), (k, k – 7) and (k – 1, –k – 2) are collinear.


Transcript

Question 16 (OR 2nd question) Find the value of k for which the points (3k – 1, k – 2), (k, k – 7) and (k – 1, –k – 2) are collinear. Let points be A (3k – 1, k – 2), B (k, k – 7) and C (k – 1, –k – 2) If A, B, C are collinear, they will lie on the same line, i.e. they will not form triangle Therefore, Area of ∆ABC = 0 1/2 [ x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2) ] = 0 1 mark Here x1 = 3k – 1 , y1 = k – 2 x2 = k , y2 = k – 7 x3 = k – 1 , y3 = −k – 2 Putting values 1/2 [ x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2) ] = 0 x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2) = 0 (3k – 1)[k – 7 – (–k – 2)] + k[−k − 2 – (k – 2)] + (k – 1)[(k – 2) – (k – 7)] = 0 (3k – 1)[k – 7 + k + 2] + k[−k − 2 – k + 2] + (k – 1)[k – 2 – k + 7] = 0 (3k – 1)(2k – 5) + k[−2k] + (k – 1)[–2 + 7] = 0 3k(2k – 5) – 1(2k – 5) – 2k2 + (k – 1)5 = 0 6k2 – 15k – 2k + 5 – 2k2 + 5k – 5 = 0 6k2 – 2k2 – 15k – 2k + 5k + 5 – 5 = 0 4k2 – 12k = 0 4k(k – 3) = 0 1 mark So, k = 0 and k = 3 1 mark

  1. Class 10
  2. Solutions of Sample Papers for Class 10 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo