Transcript
Question 21
Find the equation of the line which intersects the lines (š„ + 2)/1 = (š¦ ā 3)/2 = (š§ +1)/4 and (š„ ā1)/2 = (š¦ ā2)/3 = (š§ ā 3)/4 and passes through the point (1, 1, 1).
We need to find equation of line which intersects the lines
(š„ + 2)/1 = (š¦ ā 3)/2 = (š§ + 1)/4
(š„ ā 1)/2 = (š¦ ā 2)/3 = (š§ ā 3)/4
and passes through (1, 1, 1)
Now,
Equation of a line passing through two points (x1, y1, z1) and (x1, y1, z1)
(š„ ā š„1)/(š„2 ā š„1) = (š¦ ā š¦1)/(š¦2 ā š¦1) = (š§ ā š§1)/(š§2 ā š§1)
We use (x1, y1, z1 ) = (1, 1, 1)
If point is in Line (1)
(š„ + 2)/1 = (š¦ ā 3)/2 = (š§ + 1)/4
General point is
(š„ + 2)/1 = (š¦ ā 3)/2 = (š§ +1)/4 = p
So, (š„ + 2)/1 = p
ā x = p ā 2
So, (š¦ ā 3)/2 = p
ā y = 2p + 3
So, (š§ +1)/4 = p
z = 4p ā 1
If point is in Line (1)
(š„ ā 1)/2 = (š¦ ā 2)/3 = (š§ ā 3)/4
General point is
(š„ ā 1)/2 = (š¦ ā 2)/3 = (š§ ā 3)/4 = q
So, (š„ ā 1)/2 = q
ā x = 2q + 1
So, (š¦ ā 2)/3 = q
ā y = 3q + 2
So, (š§ ā 3)/4 = q
z = 4q + 3
So, point is (p ā 2, 2p + 3, 4p ā 1)
i.e. (x2, y2, z2) = (pā2, 2p+3, 4pā1)
Thus, equation of line will be
(š„ ā š„1)/(š„2 ā š„1) = (š¦ ā š¦1)/(š¦ ā š¦1) = (š§ ā š§1)/(š§2 ā š§1)
Putting (x1, y1, z1 ) = (1, 1, 1)
& (x2, y2, z2) = (pā2, 2p+3, 4pā1)
(š„ ā 1)/((šā2)ā 1) = (š¦ ā 1)/((2š+3) ā 1) = (š§ ā 1)/((4šā1) ā 1)
(š„ ā 1)/(š ā 3) = (š¦ ā 1)/(2š + 2) = (š§ ā 1)/(4š ā 2)
So, point is (2q + 1, 3q + 2, 4q + 3)
i.e. (x2, y2, z2) = (2q+1, 3q+2, 4q+3)
Thus, equation of line will be
(š„ ā š„1)/(š„2 ā š„1) = (š¦ ā š¦1)/(š¦ ā š¦1) = (š§ ā š§1)/(š§2 ā š§1)
Putting (x1, y1, z1 ) = (1, 1, 1)
& (x2, y2, z2) = (2q+1, 3q+2, 4q+3)
(š„ ā 1)/((2š+1)ā 1) = (š¦ ā 1)/((3š+2) ā 1) = (š§ ā 1)/((4š+3) ā 1)
(š„ ā 1)/2š = (š¦ ā 1)/(3š + 1) = (š§ ā 1)/(4š + 2)
Since (3) & (4) are the same lines
The denominator i.e. the direction cosines of line are proportional
(š ā 3)/2š = (2š + 2)/(3š + 1) = (4š ā 2)/(4š + 2)
Let (š ā 3)/2š = (2š + 2)/(3š + 1) = (4š ā 2)/(4š + 2) = k
(š ā 3)/2š = k
p ā 3 = 2qk
p = 2qk + 3
(2š + 2)/(3š + 1) = k
2p + 2 = k(3q + 1)
2p + 2 = 3qk + k
2p = 3qk + k ā 2
p = (3šš + š ā 2)/2
(4š ā 2)/(4š + 2) = k
4p ā 2 = k (4q + 2)
4p ā 2 = 4qk + 2k
4p = 4qk + 2k + 2
p = (4šš + 2š + 2)/4
Comparing (5) & (6)
2qk + 3 = (3šš + š ā 2)/2
4qk + 6 = 3qk + k ā 2
4qk ā 3qk ā k = ā2 ā 6
qk ā k = ā8
k(q ā 1) = ā8
k = (ā8)/(š ā1)
Comparing (6) & (7)
(3šš + š ā 2)/2 = (4šš + 2š + 2)/4
4 Ć (3šš + š ā 2)/2 = 4qk + 2k + 2
2(3qk + k ā 2) = 4qk + 2k + 2
6qk + 2k ā 4 = 4qk + 2k + 2
6qk ā 4qk + 2k ā 2k = 2 + 4
2qk = 6
qk = 3
Putting k = (ā8)/(š ā 1)
q Ć ((ā8)/(š ā 1)) = 3
ā8q = 3(q ā 1)
ā8q = 3q ā 3
ā8q ā 3q = ā3
ā11q = ā3
q = (ā3)/(ā11)
q = 3/11
Now, putting value of q in equation (4)
(š„ ā 1)/2š = (š¦ ā 1)/(3š + 1) = (š§ ā 1)/(4š + 2)
(š„ ā 1)/2(3/11) = (š¦ ā 1)/(3(3/11) + 1) = (š§ ā 1)/(4(3/11) + 2)
(š„ ā 1)/(6/11) = (š¦ ā 1)/(9/11 + 1) = (š§ ā 1)/(12/11 + 2)
(š„ ā 1)/(6/11) = (š¦ ā 1)/((9 + 11)/11) = (š§ ā 1)/((12 + 2(11))/11)
(š„ ā 1)/(6/11) = (š¦ ā 1)/(20/11) = (š§ ā 1)/(34/11)
Here, in the denominator, 1/11 is common, so we remove it
(š„ ā 1)/6 = (š¦ ā 1)/20 = (š§ ā 1)/34
(š„ ā 1)/(2 Ć 3) = (š¦ ā 1)/(2 Ć 10) = (š§ ā 1)/(2 Ć 17)
Here, in the denominator, 2 is common, so we remove it
(š ā š)/š = (š ā š)/šš = (š ā š)/šš