Check sibling questions

Find the particular solution of the differential equation :

ye y dx = (y 3 + 2xe y ) dy,  y(0) = 1

OR

Show that (x − y)dy = (x + 2y)dx is a homogenous differential equation. Also, find the general solution of the given differential equation.

Download Sample Paper of Class 12 here  https://www.teachoo.com/cbse/sample-papers/


Transcript

Question 19 Find the particular solution of the differential equation : yey dx = (y3 + 2xey) dy, y(0) = 1 Given equation yey dx = (y3 + 2xey) dy We try to put in form 𝑑𝑦/𝑑π‘₯ + Py = Q or 𝑑π‘₯/𝑑𝑦 + P1 x = Q1, yey dx = (y3 + 2xey) dy (𝑦𝑒^𝑦)/((𝑦3 + 2π‘₯𝑒^𝑦)) = 𝑑𝑦/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = (𝑦𝑒^𝑦)/((𝑦3 + 2π‘₯𝑒^𝑦)) This is not of the form 𝑑𝑦/𝑑π‘₯ + Py = Q ∴ We find 𝑑π‘₯/𝑑𝑦 𝑑π‘₯/𝑑𝑦 = ((𝑦^3 + 2π‘₯𝑒^𝑦))/(𝑦𝑒^𝑦 ) 𝑑π‘₯/𝑑𝑦 = 𝑦^3/(𝑦𝑒^𝑦 )+(2π‘₯𝑒^𝑦)/(𝑦𝑒^𝑦 ) 𝑑π‘₯/𝑑𝑦 = 𝑦^2/𝑒^𝑦 +2π‘₯/𝑦 𝑑π‘₯/π‘‘π‘¦βˆ’2π‘₯/𝑦 = 𝑦^2/𝑒^𝑦 𝑑π‘₯/𝑑𝑦+((βˆ’2)/𝑦)π‘₯ = 𝑦^2/𝑒^𝑦 Comparing with 𝑑π‘₯/𝑑𝑦 + P1 x = Q1 Where P1 = (βˆ’2)/𝑦 & Q1 = 𝑦^2/𝑒^𝑦 Find Integrating factor, IF = 𝑒^∫1▒〖𝑃1 𝑑𝑦〗 = 𝑒^∫1β–’(βˆ’2𝑑𝑦)/𝑦 = 𝑒^(βˆ’2∫1▒𝑑𝑦/𝑦) = 𝑒^(βˆ’2 log⁑𝑦 ) Using a log b = log ba = 𝑒^(γ€–log⁑𝑦〗^(βˆ’2) ) = 𝑦^(βˆ’2) = 1/𝑦^2 Solution is π‘₯ (IF) = ∫1β–’γ€–(𝑄1×𝐼𝐹)𝑑𝑦+𝑐〗 π‘₯ Γ— 1/𝑦^2 = ∫1▒〖𝑦^2/𝑒^𝑦 Γ—1/𝑦^2 𝑑𝑦+𝑐〗 π‘₯/𝑦^2 = ∫1β–’γ€–1/𝑒^𝑦 𝑑𝑦+𝑐〗 π‘₯/𝑦^2 = ∫1▒〖𝑒^(βˆ’π‘¦) 𝑑𝑦+𝑐〗 π‘₯/𝑦^2 = βˆ’1 ×𝑒^(βˆ’π‘¦)+𝑐 π‘₯/𝑦^2 = γ€–βˆ’π‘’γ€—^(βˆ’π‘¦)+𝑐 π‘₯ = γ€–βˆ’π‘¦^2 𝑒〗^(βˆ’π‘¦)+𝑐𝑦^2 We need to find particular solution, Putting x = 0, y = 1 0 = γ€–βˆ’1^2 𝑒〗^(βˆ’1)+𝑐〖(1)γ€—^2 0 = γ€–βˆ’π‘’γ€—^(βˆ’1)+𝑐 𝑒^(βˆ’1) =𝑐 c=𝑒^(βˆ’1) c=1/𝑒 Putting value of c in (2) π‘₯ = γ€–βˆ’π‘¦^2 𝑒〗^(βˆ’π‘¦)+𝑐𝑦^2 π‘₯ = γ€–βˆ’π‘¦^2 𝑒〗^(βˆ’π‘¦)+(1/𝑒) 𝑦^2 𝒙 = γ€–βˆ’π’š^𝟐 𝒆〗^(βˆ’π’š)+π’š^𝟐/𝒆 Question 19 Show that (x βˆ’ y)dy = (x + 2y)dx is a homogenous differential equation. Also, find the general solution of the given differential equation. Theory To prove homogenous Step 1: Find 𝑑𝑦/𝑑π‘₯ Step 2: Put F(π‘₯ , 𝑦)=𝑑𝑦/𝑑π‘₯ & Find F(πœ†π‘₯ ,πœ†π‘¦) Step 3: Then solve using by putting 𝑦=𝑣π‘₯ Finding 𝑑𝑦/𝑑π‘₯ (x βˆ’ y)dy = (x + 2y)dx 𝑑𝑦/𝑑π‘₯=((π‘₯ + 2𝑦)/(π‘₯ βˆ’ 𝑦)) Now, Putting F(π‘₯ , 𝑦)=𝑑𝑦/𝑑π‘₯ & Find F(πœ†π‘₯ ,πœ†π‘¦) Let F(π‘₯ , 𝑦)=((π‘₯ + 2𝑦)/(π‘₯ βˆ’ 𝑦)) Finding F(𝝀𝒙 ,π€π’š) F(πœ†π‘₯ ,πœ†π‘¦)=(πœ†π‘₯ + 2(πœ†π‘¦))/(πœ†π‘₯ βˆ’πœ†π‘¦) =πœ†(π‘₯ + 2𝑦)/(πœ† (π‘₯ βˆ’ 𝑦) ) =((π‘₯ + 2𝑦))/(π‘₯ βˆ’ 𝑦) = F(π‘₯ , 𝑦) Thus , F(πœ†π‘₯ ,πœ†π‘¦)="F" (π‘₯ , 𝑦)" " =πœ†Β°" F" (π‘₯ , 𝑦)" " Thus , "F" (π‘₯ , 𝑦)" is Homogeneous function of degree zero" Therefore, the given Differential Equation is Homogeneous differential Equation Step 3: Solving 𝑑𝑦/𝑑π‘₯ by Putting 𝑦=𝑣π‘₯ 𝑑𝑦/𝑑π‘₯=((π‘₯ + 2𝑦)/(π‘₯ βˆ’ 𝑦)) Let 𝑦=𝑣π‘₯ So , 𝑑𝑦/𝑑π‘₯=𝑑(𝑣π‘₯)/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯=𝑑𝑣/𝑑π‘₯ . π‘₯+𝑣 𝑑π‘₯/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯=𝑑𝑣/𝑑π‘₯ π‘₯+𝑣 Putting 𝑑𝑦/𝑑π‘₯ π‘Žnd 𝑦/π‘₯ 𝑖𝑛 (𝑖) 𝑖.𝑒. 𝑑𝑦/𝑑π‘₯=(π‘₯ + 2𝑦)/(π‘₯ βˆ’ 𝑦) 𝑑𝑣/𝑑π‘₯ π‘₯+𝑣= (π‘₯ + 2 𝑣π‘₯)/(π‘₯ βˆ’ 𝑣π‘₯) 𝑑𝑣/𝑑π‘₯ π‘₯+𝑣= π‘₯(1 + 2𝑣)/π‘₯(1 βˆ’ 𝑣) 𝑑𝑣/𝑑π‘₯ π‘₯+𝑣= (1 + 2𝑣)/(1βˆ’ 𝑣) 𝑑𝑣/𝑑π‘₯ π‘₯= (1 + 2𝑣)/(1βˆ’ 𝑣)βˆ’π‘£ 𝑑𝑣/𝑑π‘₯ . π‘₯= (1 + 2𝑣 βˆ’ 𝑣 (1βˆ’ 𝑣))/(1 βˆ’π‘£) 𝑑𝑣/𝑑π‘₯ . π‘₯= (1 + 2𝑣 βˆ’ 𝑣 +γ€– 𝑣〗^2)/(1 βˆ’ 𝑣) 𝑑𝑣/𝑑π‘₯ . π‘₯= (γ€– 𝑣〗^2 + 𝑣 + 1)/(1 βˆ’ 𝑣) 𝑑𝑣/𝑑π‘₯ π‘₯=βˆ’((γ€– 𝑣〗^2 + 𝑣 + 1)/(𝑣 βˆ’ 1)) 𝑑𝑣((π‘£βˆ’1)/(𝑣^(2 )+ 𝑣 + 1))=(βˆ’ 𝑑π‘₯)/π‘₯ Integrating Both Sides ∫1β–’γ€–(𝑣 βˆ’1)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣=∫1β–’(βˆ’π‘‘π‘₯)/π‘₯γ€— ∫1β–’γ€–(𝑣 βˆ’1)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣=βˆ’βˆ«1▒𝑑π‘₯/π‘₯γ€— ∫1β–’γ€–((𝑣 βˆ’1) 𝑑𝑣)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣〗=βˆ’log⁑〖|π‘₯|γ€— + 𝑐 We can write 𝑣^2+𝑣+1 = 𝑣^2 + 1/2 . 2v + (1/2)^2+1βˆ’(1/2)^2 =(𝑣+1/2)^2 + 1 – 1/4 =(𝑣+1/2)^2+3/4 Putting 𝑣^2+𝑣+1=(𝑣+1/2)^2+3/4 & π‘£βˆ’1=𝑣+𝟏/πŸβˆ’πŸ/πŸβˆ’1 =(𝑣+1/2)βˆ’3/2 ∫1β–’((𝑣 + 1/2) βˆ’ 3/2)/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣=βˆ’log⁑〖π‘₯+𝑐〗 ∫1β–’(𝑣 + 1/2)/((𝑣 + 1/2)^2+ 3/4) π‘‘π‘£βˆ’3/2 ∫1β–’1/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣=βˆ’log⁑〖π‘₯+𝑐〗 Thus, I = I1 – (3 )/2 I2 Solving 𝐼1 𝐼1=∫1β–’((𝑣 + 1/2))/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣 Put (𝑣+ 1/2)^2+ 3/4 =𝑑 Diff. w.r.t. 𝑣 𝑑((𝑣 + 1/2)^2+ 3/4)/𝑑𝑣=𝑑𝑑/𝑑𝑣 2(𝑣+1/2)=𝑑𝑑/𝑑𝑣 𝑑𝑣=𝑑𝑑/2(𝑣 + 1/2) Putting value of v & dv in I1 𝐼1=∫1β–’((𝑣 + 1/2))/𝑑 ×𝑑𝑑/2(𝑣 + 1/2) =1/2 ∫1▒𝑑𝑑/𝑑 =1/2 log⁑ |𝑑| Putting 𝑑=(𝑣+ 1/2)^2+3/4 =1/2 π‘™π‘œπ‘”|(𝑣+ 1/2)^2+3/4| =1/2 π‘™π‘œπ‘”|𝑣^2+2𝑣 Γ— 1/2 + 1/4 + 3/4| I1 =1/2 log⁑〖 |𝑣^2+𝑣+1|γ€— Solving π‘°πŸ 𝐼2=∫1▒𝑑𝑣/((𝑣 + 1/2)^2+3/4) =∫1▒𝑑𝑣/((𝑣 + 1/2)^2+(√3/2)^2 ) Put 𝑑=𝑣+1/2 Diff. w.r.t. 𝑣 𝑑𝑑/𝑑𝑣=1 β‡’ 𝑑𝑑=𝑑𝑣 = ∫1▒𝑑𝑑/(𝑑^2 + γ€– (√3/2)γ€—^2 ) =1/(√3/2) tan^(βˆ’1)⁑〖𝑑/(√3/2)γ€— =2/√3 tan^(βˆ’1)⁑〖2(𝑣 + 1/2)/√3γ€— =2/√3 tan^(βˆ’1)⁑((2𝑣 + 1)/√3) Hence I = 𝐼1βˆ’3/2 𝐼2 I =1/2 log⁑ |𝑣^2+𝑣+1|βˆ’3/2 Γ—2/√3 tan^(βˆ’1)⁑((2𝑣 +1)/√3) I =1/2 log⁑ |𝑣^2+𝑣+1|βˆ’βˆš3 tan^(βˆ’1)⁑((2𝑣 +1)/√3) Replacing v by (𝑦 )/π‘₯ I =1/2 π‘™π‘œπ‘”|(𝑦/π‘₯)^2+𝑦/π‘₯+1|βˆ’βˆš3 tan^(βˆ’1)⁑((2𝑦/π‘₯ + 1)/√3) I =1/2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|βˆ’βˆš3 tan^(βˆ’1)⁑((2𝑦 + π‘₯)/(√3 π‘₯)) Putting Value of I in (2) 1/2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|βˆ’βˆš3 tan^(βˆ’1)⁑((2𝑦 + π‘₯)/(√3 π‘₯))=βˆ’π‘™π‘œπ‘”|π‘₯|+𝑐 1/2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|+π‘™π‘œπ‘”|π‘₯|=√3 tan^(βˆ’1)⁑((2𝑦 + π‘₯)/(√3 π‘₯))+𝑐 Multiplying Both Sides By 2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|+2 π‘™π‘œπ‘”|π‘₯|=2 √3 tan^(βˆ’1)⁑((2𝑦 + π‘₯)/(√3 π‘₯))+2𝑐 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|+π‘™π‘œπ‘”|π‘₯|^2=2√3 tan^(βˆ’1)⁑((2𝑦 + π‘₯)/(√3 π‘₯))+2𝑐 Put 2𝑐=𝑐 π‘™π‘œπ‘”[|𝑦^2/π‘₯^2 +𝑦/π‘₯+1| Γ— |π‘₯^2 |]=2√3 tan^(βˆ’1)⁑((2𝑦 + π‘₯)/(√3 π‘₯))+𝑐 π‘™π‘œπ‘”|γ€–π‘₯^2 𝑦〗^2/π‘₯^2 +(π‘₯^2 𝑦)/π‘₯+π‘₯^2 |=2√3 tan^(βˆ’1)⁑((π‘₯ + 2𝑦)/(√3 π‘₯))+𝑐 π’π’π’ˆ|𝒙^𝟐+π’™π’š+π’š^𝟐 |=πŸβˆšπŸ‘ 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑((𝒙 + πŸπ’š)/(βˆšπŸ‘ 𝒙))+𝒄 Is the General Solution of the Differential Equation given

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo