Check sibling questions

Find ∫ sec⁡ x /(1 + cosec x)  dx

This is a question of CBSE Sample Paper - Class 12 - 2017/18.

You can download the question paper here  https://www.teachoo.com/cbse/sample-papers/



Transcript

Question 18 Find ∫1β–’sec⁑π‘₯/(1 + π‘π‘œπ‘ π‘’π‘ π‘₯) dx ∫1β–’(𝑠𝑒𝑐 π‘₯)/(1 + π‘π‘œπ‘ π‘’π‘ π‘₯) 𝑑π‘₯ = ∫1β–’(1/π‘π‘œπ‘ β‘π‘₯ )/(1 + 1/𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯ = ∫1β–’(1/π‘π‘œπ‘ β‘π‘₯ )/((𝑠𝑖𝑛⁑π‘₯ + 1)/𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯ = ∫1β–’γ€–1/π‘π‘œπ‘ β‘π‘₯ Γ— sin⁑π‘₯/(𝑠𝑖𝑛⁑π‘₯ + 1)γ€— 𝑑π‘₯ = ∫1β–’(𝑠𝑖𝑛 π‘₯)/(π‘π‘œπ‘  π‘₯(1 + 𝑠𝑖𝑛 π‘₯)) 𝑑π‘₯ Multiplying and dividing by cos x = ∫1β–’(𝑠𝑖𝑛 π‘₯)/(π‘π‘œπ‘  π‘₯(1 + 𝑠𝑖𝑛 π‘₯)) Γ—cos⁑π‘₯/cos⁑π‘₯ 𝑑π‘₯ = ∫1β–’(𝑠𝑖𝑛 π‘₯ cos⁑π‘₯)/(cos^2⁑π‘₯ (1 + 𝑠𝑖𝑛 π‘₯)) 𝑑π‘₯ Using cos2 x = 1 – sin2 x = ∫1β–’(𝑠𝑖𝑛 π‘₯ cos⁑π‘₯)/((1 βˆ’ sin^2⁑π‘₯ )(1 + sin⁑〖π‘₯)γ€— ) 𝑑π‘₯ = ∫1β–’(𝑠𝑖𝑛 π‘₯ cos⁑π‘₯)/( (1 βˆ’ sin⁑〖π‘₯)γ€— (1 + sin⁑〖π‘₯)γ€— (1 + sin⁑〖π‘₯)γ€— ) 𝑑π‘₯ = ∫1β–’(𝑠𝑖𝑛 π‘₯ cos⁑π‘₯)/((1 + γ€–sin⁑〖π‘₯)γ€—γ€—^2 (1 βˆ’ sin⁑〖π‘₯)γ€— ) 𝑑π‘₯ Let sin x = t ∴ cos x dx = dt Putting values in equation = ∫1β–’(𝑑 )/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) dt We solve this by partial fractions We can write the integrand as 𝑑/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) = 𝐴/(1 + 𝑑) + 𝐡/(1 + 𝑑)^2 + 𝐢/(1 βˆ’ 𝑑) 𝑑/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) = (𝐴(1 + 𝑑)(1 βˆ’ 𝑑) + 𝐡(1 βˆ’ 𝑑) + 𝐢(1 + 𝑑)^2)/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) By cancelling denominator 𝑑 = 𝐴(1 + 𝑑)(1 βˆ’ 𝑑) + 𝐡(1 βˆ’ 𝑑) + 𝐢(1 + 𝑑)^2 Putting t = –1 in (1) –1 = 𝐴(1+(βˆ’1))(1 βˆ’(βˆ’1)) + 𝐡(1 βˆ’(βˆ’1)) + 𝐢(1 +(βˆ’1))^2 βˆ’1 = AΓ—0+BΓ—2+C(0)^2 βˆ’1 = 2B 2B = –1 B = (βˆ’1)/2 Putting t = 1 in (1) 1 = 𝐴(1+1)(1 βˆ’1) + 𝐡(1 βˆ’1) + 𝐢(1 +1)^2 1 = AΓ—0+BΓ—0+C(2)^2 1 = 4C 4C = 1 C = 1/4 Putting t = 0 in (1) 0 = 𝐴(1+0)(1 βˆ’0) + 𝐡(1 βˆ’0) + 𝐢(1 +0)^2 0 = 𝐴(1)(1) + 𝐡(1) + 𝐢(1)^2 0 = A+B+C 0 = A + ((βˆ’1)/2) + 1/4 1/2βˆ’1/4 = A 1/4 = A A = 1/4 Hence we can write ∫1β–’(𝑑 )/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) dt = ∫1β–’(1/4)/((1 + 𝑑) ) dt + ∫1β–’((βˆ’1)/2)/(1 + 𝑑)^2 dt + ∫1β–’(1/4)/( (1 βˆ’ 𝑑)) dt

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo