Check sibling questions


Transcript

Ex 9.4, 5 show that the given differential equation is homogeneous and solve each of them. ๐‘ฅ^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘ฅ^2โˆ’2๐‘ฆ^2+๐‘ฅ๐‘ฆ Step 1: Find ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐‘ฅ^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘ฅ^2โˆ’2๐‘ฆ^2+๐‘ฅ๐‘ฆ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ= (๐‘ฅ^2 โˆ’ 2๐‘ฆ^2 + ๐‘ฅ๐‘ฆ)/๐‘ฅ^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ= 1โˆ’(2๐‘ฆ^2)/๐‘ฅ^2 + ๐‘ฅ๐‘ฆ/๐‘ฅ^2 ๐’…๐’š/๐’…๐’™= ๐Ÿโˆ’(๐Ÿ๐’š^๐Ÿ)/๐’™ + ๐’š/๐’™ Step 2: Put ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = F (x, y) and find F(๐œ†x, ๐œ†y) ๐น(๐‘ฅ, ๐‘ฆ) = 1 โˆ’ (2๐‘ฆ^2)/๐‘ฅ^2 + ๐‘ฆ/๐‘ฅ Finding F(๐œ†x, ๐œ†y) F(๐œ†x, ๐œ†y) = 1 โˆ’ (2ใ€–(๐œ†๐‘ฆ)ใ€—^2)/(๐œ†๐‘ฅ)^2 + ๐œ†๐‘ฆ/๐œ†๐‘ฅ = 1 โˆ’ (2๐œ†^2 ๐‘ฆ^2)/(๐œ†^2 ๐‘ฅ^2 ) + ๐‘ฆ/๐‘ฅ = 1 โˆ’ (2๐‘ฆ^2)/๐‘ฅ^2 + ๐‘ฆ/๐‘ฅ = F(x, y) โˆด F(๐œ†x, ๐œ†y) = F(x, y) = ๐œ†ยฐ F(x, y) Hence, F(x, y) is a homogenous Function of with degree zero So, ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ is a homogenous differential equation. Step 3: Solving ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ by putting y = vx Putting y = vx. Differentiating w.r.t.x ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ๐‘‘๐‘ฅ/๐‘‘๐‘ฅ ๐’…๐’š/๐’…๐’™ = ๐’™ ๐’…๐’—/๐’…๐’™ + v Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1 โˆ’ (2๐‘ฆ^2)/๐‘ฅ^2 + ๐‘ฆ/๐‘ฅ ๐‘ฅ ๐’…๐’—/๐’…๐’™ + v = 1 โˆ’ 2 ใ€–(๐’—๐’™)ใ€—^๐Ÿ/๐’™^๐Ÿ + ๐’—๐’™/๐’™ x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + v = 1 โˆ’ (2๐‘ฃ^2 ๐‘ฅ^2)/๐‘ฅ^2 + ๐‘ฃ Putting y = vx. Differentiating w.r.t.x ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ๐‘‘๐‘ฅ/๐‘‘๐‘ฅ ๐’…๐’š/๐’…๐’™ = ๐’™ ๐’…๐’—/๐’…๐’™ + v Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1 โˆ’ (2๐‘ฆ^2)/๐‘ฅ^2 + ๐‘ฆ/๐‘ฅ ๐‘ฅ ๐’…๐’—/๐’…๐’™ + v = 1 โˆ’ 2 ใ€–(๐’—๐’™)ใ€—^๐Ÿ/๐’™^๐Ÿ + ๐’—๐’™/๐’™ x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + v = 1 โˆ’ (2๐‘ฃ^2 ๐‘ฅ^2)/๐‘ฅ^2 + ๐‘ฃ Using โˆซ1โ–’1/(๐‘Ž^2 โˆ’ ๐‘ฅ^2 ) dx = 1/2๐‘Ž log |(๐‘Ž + ๐‘ฅ)/(๐‘Ž โˆ’ ๐‘ฅ)| ๐Ÿ/๐Ÿ ร—๐Ÿ/๐Ÿ( ๐Ÿ/โˆš๐Ÿ ) log |(๐Ÿ/โˆš๐Ÿ + ๐’—)/(๐Ÿ/โˆš๐Ÿ โˆ’ ๐’—)|= log |๐‘ฅ| + c โˆš2/4 log |(1 + โˆš2 ๐‘ฃ)/(1 โˆ’ โˆš2 ๐‘ฃ)| = log |๐‘ฅ| + c Putting v = ๐‘ฆ/๐‘ฅ ๐Ÿ/(๐Ÿโˆš๐Ÿ) log |(๐Ÿ + โˆš๐Ÿ ๐’š/๐’™)/(๐Ÿ โˆ’ โˆš๐Ÿ ๐’š/๐’™)| = log |๐’™| + c 1/(2โˆš2) log |((๐‘ฅ + โˆš2 ๐‘ฆ)/๐‘ฅ)/((๐‘ฅ โˆ’ โˆš2 ๐‘ฆ)/๐‘ฅ)| = log |๐‘ฅ| + c ๐Ÿ/(๐Ÿโˆš๐Ÿ) log |(๐’™+โˆš๐Ÿ ๐’š)/(๐’™โˆ’โˆš๐Ÿ ๐’š)| = log |๐’™| + c .

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo