Ex 9.4, 5 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.4, 5 show that the given differential equation is homogeneous and solve each of them. ๐ฅ^2 ๐๐ฆ/๐๐ฅ=๐ฅ^2โ2๐ฆ^2+๐ฅ๐ฆ Step 1: Find ๐๐ฆ/๐๐ฅ ๐ฅ^2 ๐๐ฆ/๐๐ฅ=๐ฅ^2โ2๐ฆ^2+๐ฅ๐ฆ ๐๐ฆ/๐๐ฅ= (๐ฅ^2 โ 2๐ฆ^2 + ๐ฅ๐ฆ)/๐ฅ^2 ๐๐ฆ/๐๐ฅ= 1โ(2๐ฆ^2)/๐ฅ^2 + ๐ฅ๐ฆ/๐ฅ^2 ๐ ๐/๐ ๐= ๐โ(๐๐^๐)/๐ + ๐/๐ Step 2: Put ๐๐ฆ/๐๐ฅ = F (x, y) and find F(๐x, ๐y) ๐น(๐ฅ, ๐ฆ) = 1 โ (2๐ฆ^2)/๐ฅ^2 + ๐ฆ/๐ฅ Finding F(๐x, ๐y) F(๐x, ๐y) = 1 โ (2ใ(๐๐ฆ)ใ^2)/(๐๐ฅ)^2 + ๐๐ฆ/๐๐ฅ = 1 โ (2๐^2 ๐ฆ^2)/(๐^2 ๐ฅ^2 ) + ๐ฆ/๐ฅ = 1 โ (2๐ฆ^2)/๐ฅ^2 + ๐ฆ/๐ฅ = F(x, y) โด F(๐x, ๐y) = F(x, y) = ๐ยฐ F(x, y) Hence, F(x, y) is a homogenous Function of with degree zero So, ๐๐ฆ/๐๐ฅ is a homogenous differential equation. Step 3: Solving ๐๐ฆ/๐๐ฅ by putting y = vx Putting y = vx. Differentiating w.r.t.x ๐๐ฆ/๐๐ฅ = x ๐๐ฃ/๐๐ฅ+๐ฃ๐๐ฅ/๐๐ฅ ๐ ๐/๐ ๐ = ๐ ๐ ๐/๐ ๐ + v Putting value of ๐๐ฆ/๐๐ฅ and y = vx in (1) ๐๐ฆ/๐๐ฅ = 1 โ (2๐ฆ^2)/๐ฅ^2 + ๐ฆ/๐ฅ ๐ฅ ๐ ๐/๐ ๐ + v = 1 โ 2 ใ(๐๐)ใ^๐/๐^๐ + ๐๐/๐ x ๐๐ฃ/๐๐ฅ + v = 1 โ (2๐ฃ^2 ๐ฅ^2)/๐ฅ^2 + ๐ฃ Putting y = vx. Differentiating w.r.t.x ๐๐ฆ/๐๐ฅ = x ๐๐ฃ/๐๐ฅ+๐ฃ๐๐ฅ/๐๐ฅ ๐ ๐/๐ ๐ = ๐ ๐ ๐/๐ ๐ + v Putting value of ๐๐ฆ/๐๐ฅ and y = vx in (1) ๐๐ฆ/๐๐ฅ = 1 โ (2๐ฆ^2)/๐ฅ^2 + ๐ฆ/๐ฅ ๐ฅ ๐ ๐/๐ ๐ + v = 1 โ 2 ใ(๐๐)ใ^๐/๐^๐ + ๐๐/๐ x ๐๐ฃ/๐๐ฅ + v = 1 โ (2๐ฃ^2 ๐ฅ^2)/๐ฅ^2 + ๐ฃ Using โซ1โ1/(๐^2 โ ๐ฅ^2 ) dx = 1/2๐ log |(๐ + ๐ฅ)/(๐ โ ๐ฅ)| ๐/๐ ร๐/๐( ๐/โ๐ ) log |(๐/โ๐ + ๐)/(๐/โ๐ โ ๐)|= log |๐ฅ| + c โ2/4 log |(1 + โ2 ๐ฃ)/(1 โ โ2 ๐ฃ)| = log |๐ฅ| + c Putting v = ๐ฆ/๐ฅ ๐/(๐โ๐) log |(๐ + โ๐ ๐/๐)/(๐ โ โ๐ ๐/๐)| = log |๐| + c 1/(2โ2) log |((๐ฅ + โ2 ๐ฆ)/๐ฅ)/((๐ฅ โ โ2 ๐ฆ)/๐ฅ)| = log |๐ฅ| + c ๐/(๐โ๐) log |(๐+โ๐ ๐)/(๐โโ๐ ๐)| = log |๐| + c .
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo