Check sibling questions


Transcript

Ex 9.4, 4 show that the given differential equation is homogeneous and solve each of them. (๐‘ฅ^2โˆ’๐‘ฆ^2 )๐‘‘๐‘ฅ+2๐‘ฅ๐‘ฆ ๐‘‘๐‘ฆ=0 Step 1: Find ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (๐‘ฅ^2โˆ’๐‘ฆ^2 )๐‘‘๐‘ฅ+2๐‘ฅ๐‘ฆ ๐‘‘๐‘ฆ=0 2xy dy = โˆ’ (๐‘ฅ^2โˆ’๐‘ฆ^2 ) dx 2xy dy = (๐‘ฆ^2โˆ’๐‘ฅ^2 ) dx ๐’…๐’š/๐’…๐’™ = (๐’š^๐Ÿ โˆ’ ๐’™^๐Ÿ)/๐Ÿ๐’™๐’š Step 2: Putting F(x, y) = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and finding F(๐œ†x, ๐œ†y) F(x, y) = (๐‘ฆ^2 โˆ’ ๐‘ฅ^2)/2๐‘ฅ๐‘ฆ F(๐œ†x, ๐œ†y) = ((๐œ†๐‘ฆ)^2โˆ’(๐œ†๐‘ฅ)^2)/(2๐œ†๐‘ฅ. ๐œ†๐‘ฆ)= (๐‘ฅ^2 ๐‘ฆ^2 โˆ’๐œ†^2 ๐‘ฅ^2)/(๐œ†^2.2๐‘ฅ๐‘ฆ)= (๐œ†^2 (๐‘ฆ^2 โˆ’ ๐‘ฅ^2))/(๐œ†^2.2๐‘ฅ๐‘ฆ) = (๐‘ฆ^2 โˆ’๐‘ฅ^2)/2๐‘ฅ๐‘ฆ = F(x, y) โˆด F(๐œ†x, ๐œ†y) = F(x, y) = ๐œ†ยฐ F(x, y) Hence, F(x, y) is a homogenous Function of with degree zero So, ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ is a homogenous differential equation. Step 3: Solving ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ by putting y = vx Put y = vx. differentiating w.r.t.x ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ๐‘‘๐‘ฅ/๐‘‘๐‘ฅ ๐’…๐’š/๐’…๐’™ = ๐’™ ๐’…๐’—/๐’…๐’™ + v Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘ฆ^2 โˆ’ ๐‘ฅ^2)/2๐‘ฅ๐‘ฆ (๐’™ ๐’…๐’—)/๐’…๐’™+๐’— = (ใ€–(๐’™๐’—)ใ€—^๐Ÿ โˆ’ ๐’™^๐Ÿ)/(๐Ÿ๐’™(๐’™ ๐’—)) (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ+๐‘ฃ = (๐‘ฅ^2 ๐‘ฃ^2โˆ’๐‘ฅ^2)/(2๐‘ฅ^2 ๐‘ฃ) (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = (๐‘ฅ^2 ๐‘ฃ^2 โˆ’ ๐‘ฅ^2)/(2๐‘ฅ^2 ๐‘ฃ) โˆ’ v x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = (๐‘ฅ^2 ๐‘ฃ^2 โˆ’ ๐‘ฅ^2 โˆ’ 2๐‘ฅ^2 ๐‘ฃ^2)/(2๐‘ฅ^2 ๐‘ฃ) x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = (ใ€–โˆ’๐‘ฅใ€—^2 ๐‘ฃ^2 โˆ’ ๐‘ฅ^2)/(2๐‘ฅ^2 ๐‘ฃ) ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = โˆ’ 1/๐‘ฅ ((๐‘ฅ^2 ใ€–(๐‘ฃใ€—^2 + 1))/(2๐‘ฅ^2 ๐‘ฃ)) ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = โˆ’ 1/๐‘ฅ ((๐‘ฃ^2 + 1)/2๐‘ฃ) (๐Ÿ๐’— ๐’…๐’—)/(๐’—^๐Ÿ + ๐Ÿ) = (โˆ’๐’…๐’™)/๐’™ Integrating both sides โˆซ1โ–’2๐‘ฃ/(๐‘ฃ^2 + 1) ๐‘‘๐‘ฃ = โˆซ1โ–’(โˆ’๐‘‘๐‘ฅ)/๐‘ฅ โˆซ1โ–’๐Ÿ๐’—/(๐’—^๐Ÿ + ๐Ÿ) ๐’…๐’— = โˆ’๐’๐’๐’ˆโก|๐’™|+๐‘ช Putting t = v2 + 1 diff.w.r.t v. ๐‘‘/๐‘‘๐‘ฃ (v2 + 1) = ๐‘‘๐‘ก/๐‘‘๐‘ฃ 2v = ๐‘‘๐‘ก/๐‘‘๐‘ฃ dv = ๐’…๐’•/๐Ÿ๐’— Now, From (2) โˆซ1โ–’2๐‘ฃ/๐‘ก ๐‘‘๐‘ก/2๐‘ฃ = โˆ’ log|๐‘ฅ|+๐‘ (from (2)) โˆซ1โ–’๐’…๐’•/๐’• = โˆ’ log|๐’™|+๐’„ log|๐‘ก| = โˆ’ log|๐‘ฅ|+๐‘ Putting t = v2 + 1 log|"v2 + 1" | = โ€“log|"x" |+๐‘ log |"v2 + 1" | + log|"x" |=๐‘ log |"x(v2 + 1)" | = C Putting v = ๐‘ฆ/๐‘ฅ log |[(๐‘ฆ/๐‘ฅ)^2+1]๐‘ฅ|=๐‘ log|(๐‘ฆ^2 + ๐‘ฅ^2)/๐‘ฅ^2 ร—๐‘ฅ|=๐‘ Putting ๐‘ = log c log |(๐’š^๐Ÿ + ๐’™^๐Ÿ)/๐’™| = log c ๐‘ฆ^2+๐‘ฅ^2 = cx ๐’™^๐Ÿ+๐’š^๐Ÿ=๐’„๐’™ is the general solution of the given differential equation.

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo