Check sibling questions


Transcript

Ex 9.4, 3 In each of the Exercise 1 to 10, show that the given differential equation is homogeneous and solve each of them. (xβˆ’y)𝑑yβˆ’(x+y)𝑑π‘₯=0 Step 1: Find 𝑑𝑦/𝑑π‘₯ (x βˆ’ y) dy βˆ’ (x + y) dx = 0 (x βˆ’ y) dy = (x + y) dx π’…π’š/𝒅𝒙 = (𝒙 + π’š)/(𝒙 βˆ’ π’š) Step 2: Put 𝑑𝑦/𝑑π‘₯ = F(x, y) and find out F(πœ†x, πœ†y) F(x, y) = (π‘₯ + 𝑦)/(π‘₯ βˆ’ 𝑦) F(πœ†x, πœ†y) = (πœ†π‘₯ + πœ†π‘¦)/(πœ†π‘₯βˆ’πœ†π‘¦) = (πœ†(π‘₯ + 𝑦))/(πœ† (π‘₯ βˆ’ 𝑦)) = (π‘₯ + 𝑦)/(π‘₯ βˆ’ 𝑦) = F(x, y) ∴ F(πœ†x, πœ†y) = πœ†0 F(x, y) Hence, F(x, y) is a homogenous Function of with degree zero So, 𝑑𝑦/𝑑π‘₯ is a homogenous differential equation. Step 3: Solving 𝑑𝑦/𝑑π‘₯ by putting y = vx Putting y = vx. Differentiating w.r.t. x 𝑑𝑦/𝑑π‘₯ = x 𝑑𝑣/𝑑π‘₯+𝑣𝑑π‘₯/𝑑π‘₯ π’…π’š/𝒅𝒙 = 𝒙 𝒅𝒗/𝒅𝒙 + v Putting value of 𝑑𝑦/𝑑π‘₯ and y = vx in (1) 𝑑𝑦/𝑑π‘₯ = (π‘₯ + 𝑦)/(π‘₯ βˆ’ 𝑦) x 𝒅𝒗/𝒅𝒙 + v = (𝒙 + 𝒙𝒗)/(𝒙 βˆ’ 𝒙𝒗) x 𝑑𝑣/𝑑π‘₯ + v = (π‘₯ (1 + 𝑣))/(π‘₯(1 βˆ’ 𝑣)) x 𝑑𝑣/𝑑π‘₯ + v = ((1 + 𝑣))/((1 βˆ’ 𝑣)) x 𝑑𝑣/𝑑π‘₯ = ((1 + 𝑣))/((1 βˆ’ 𝑣)) βˆ’ v x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣 βˆ’ 𝑣(1 βˆ’ 𝑣))/(1 βˆ’ 𝑣) x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣 βˆ’ 𝑣 + 𝑣^2)/(1 βˆ’ 𝑣) x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣^2)/(1 βˆ’ 𝑣) (𝟏 βˆ’ 𝒗)𝒅𝒗/(𝟏 + 𝒗^𝟐 ) = 𝒅𝒙/𝒙 Integrating both sides ∫1β–’((1 βˆ’ 𝑣)/(1 + 𝑣^2 )) 𝑑𝑣=∫1▒𝑑π‘₯/π‘₯ ∫1▒𝑑𝑣/(1 + 𝑣^2 )βˆ’βˆ«1β–’(𝑣 𝑑𝑣)/(1 + 𝑣^2 )=∫1▒𝑑π‘₯/π‘₯ tanβˆ’1 v βˆ’ ∫1▒𝒗/(𝟏 + 𝒗^𝟐 ) = log|𝒙|+𝒄 Let I = ∫1▒𝒗/(𝟏 + 𝒗^𝟐 ) dv Putting t = 1 + 𝒗^𝟐 Diff w.r.t. v 𝑑/𝑑𝑣(1 + v2) = 𝑑𝑑/𝑑𝑣 2v = 𝑑𝑑/𝑑𝑣 dv = 𝒅𝒕/πŸπ’— Therefore I = ∫1▒𝑣/(1 + 𝑣^2 ) dv = ∫1▒𝑑𝑑/2𝑑 = 1/2 π‘™π‘œπ‘”|𝑑|+𝑐 Putting back t = 1 + v2 = 1/2 π‘™π‘œπ‘”|1+𝑣^2 | + c (As ∫1β–’1/(1 + π‘₯^2 ) dx = tanβˆ’1 x) Putting value of I in (2) tanβˆ’1 v βˆ’ ∫1▒𝒗/(𝟏 + 𝒗^𝟐 ) = log|π‘₯|+𝑐 tanβˆ’1 v "βˆ’ " 𝟏/𝟐 log |𝟏+π’—πŸ| = log |π‘₯| + c tanβˆ’1 v "= " 1/2 log |1+𝑣2| + log |π‘₯| + c tanβˆ’1 v "= " 1/2 log |1+𝑣2| + 2/2 log |π‘₯| + c tanβˆ’1 v "= " 1/2 ["log " |1+𝑣2|" + " 2" log " |π‘₯|] + c tanβˆ’1 v "= " 𝟏/𝟐 "log" [" " |𝟏+π’—πŸ|.|𝒙|^𝟐 ] + c Putting v = 𝑦/π‘₯ tanβˆ’1 π’š/𝒙 "= " 𝟏/𝟐 "log" [" " (𝟏+(π’š/𝒙)^𝟐 )×𝒙^𝟐 ]+𝐜 tanβˆ’1 𝑦/π‘₯ "= " 1/2 "log" [(π‘₯^2 + 𝑦^2)/π‘₯^2 Γ—π‘₯^2 ]+c tanβˆ’1 𝑦/π‘₯ "= " 1/2 "log" [π‘₯^2+𝑦^2 ]+c tanβˆ’1 π’š/𝒙 "= " 𝟏/𝟐 "log" [𝒙^𝟐+π’š^𝟐 ]+𝐜 is the required solution

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo