Check sibling questions

 


Transcript

Ex 9.4, 1 In each of the Exercise 1 to 10 , show that the given differential equation is homogeneous and solve (x^2+xy)dy=(x^2+y^2 )𝑑x (π‘₯^2+π‘₯𝑦)𝑑𝑦 =(π‘₯^2+𝑦^2 )𝑑π‘₯ Step 1: Find 𝑑𝑦/𝑑π‘₯ (x2 + xy)dy = (π‘₯^2+𝑦^2 )𝑑π‘₯ π’…π’š/𝒅𝒙 = (𝒙^𝟐 + π’š^𝟐)/(𝒙^𝟐 + π’™π’š) Step 2: Putting F(x , y) = 𝑑𝑦/𝑑π‘₯ and finding F(πœ†x, πœ†y) F(x, y) = (π‘₯^2 + 𝑦^2)/(π‘₯^2 + π‘₯𝑦) Finding F(𝝀x, 𝝀y) F(πœ†x, πœ†y) = ((πœ†γ€–π‘₯)γ€—^2+(πœ†γ€–π‘¦)γ€—^2)/((πœ†γ€–π‘₯)γ€—^2+πœ†π‘₯ + πœ†π‘¦) = (πœ†^2 π‘₯^2 + πœ†^2 𝑦^2)/(πœ†^2 π‘₯^2 + πœ†^2 π‘₯𝑦) = (πœ†^2 (π‘₯^2 𝑦^2))/(πœ†^2 (π‘₯^2+ π‘₯𝑦)) = (π‘₯^2 𝑦^2)/(π‘₯^2 + π‘₯𝑦) = F(x, y) So, F(πœ†x, πœ†y) = F(x, y) = πœ†0 F (x, y) Thus, F(x, y) is a homogenous equation function of order zero Therefore 𝑑𝑦/𝑑π‘₯ is a homogenous differential equation Step 3 : Solving 𝑑𝑦/𝑑π‘₯ by putting y = vx Putting y = vx Diff w.r.t.x 𝑑𝑦/𝑑π‘₯ = x𝑑𝑣/𝑑π‘₯ + v 𝑑π‘₯/𝑑π‘₯ π’…π’š/𝒅𝒙 = x 𝒅𝒗/𝒅𝒙 + v Putting value of 𝑑𝑦/𝑑π‘₯ and y = vx in (1) 𝑑𝑦/𝑑π‘₯ = (π‘₯^2 + 𝑦^2)/(π‘₯^2 + π‘₯𝑦) x 𝒅𝒗/𝒅𝒙 + v = (π’™πŸ + (𝒗𝒙)^𝟐)/(π’™πŸ + 𝒙(𝒗𝒙)) x 𝑑𝑣/𝑑π‘₯ + v = (π’™πŸ(𝟏 + 𝒗^𝟐))/(π‘₯2 + π‘₯2𝑣) x 𝑑𝑣/𝑑π‘₯ + v = (π’™πŸ(1 + 𝑣^2))/(π’™πŸ(1 + 𝑣)) x 𝑑𝑣/𝑑π‘₯ + v = (1 + 𝑣^2)/(1 + 𝑣) x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣^2)/(1 + 𝑣)βˆ’π’— x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣^2 βˆ’ 𝑣 βˆ’ 𝑣^2)/(1+𝑣) x 𝒅𝒗/𝒅𝒙 = (𝟏 βˆ’ 𝒗)/(𝟏 + 𝒗) ((1 + 𝑣))/((1 βˆ’ 𝑣)) dv = 𝑑π‘₯/π‘₯ βˆ’((𝑣 + 1)/(𝑣 βˆ’ 1)) dv = 𝑑π‘₯/π‘₯ ((𝒗 + 𝟏)/(𝒗 βˆ’ 𝟏)) dv = (βˆ’π’…π’™)/𝒙 Integrating both sides ∫1β–’((𝑣 + 1)/(𝑣 βˆ’ 1)) 𝑑𝑣=βˆ’βˆ«1▒𝑑π‘₯/π‘₯ ∫1β–’((𝒗 + 𝟏)/(𝒗 βˆ’ 𝟏)) 𝒅𝒗 = βˆ’log|𝒙|+𝒄 Let I = ∫1β–’((𝑣 + 1)/(𝑣 βˆ’ 1)) 𝑑𝑣 Solving I I = ∫1β–’((𝑣 + 1 βˆ’ 1 + 1)/(𝑣 βˆ’ 1)) 𝑑𝑣 I = ∫1β–’((𝒗 βˆ’ 𝟏 + 𝟐)/(𝒗 βˆ’ 𝟏)) 𝑑𝑣 I = ∫1β–’((𝒗 βˆ’ 𝟏 )/(𝒗 βˆ’ 𝟏)+𝟐/(𝒗 βˆ’ 𝟏)) 𝑑𝑣 I = ∫1β–’(1+2/(𝑣 βˆ’ 1)) 𝑑𝑣 I = ∫1▒𝑑𝑣+∫1β–’2/(𝑣 βˆ’ 1) 𝑑𝑣 I = 𝒗+𝟐 π₯𝐨𝐠⁑〖|π’—βˆ’πŸ|γ€— Putting v = y/x I = 𝑦/π‘₯+2 log⁑|𝑦/π‘₯βˆ’1| I = π’š/𝒙+𝟐 π’π’π’ˆβ‘|(π’š βˆ’ 𝒙)/𝒙| Putting value of I in (2) π’š/𝒙+𝟐 π’π’π’ˆβ‘|(π’š βˆ’ 𝒙)/𝒙|=βˆ’π’π’π’ˆβ‘|𝒙|+π‘ͺ 𝑦/π‘₯+π’π’π’ˆβ‘γ€–|(π’š βˆ’ 𝒙)/𝒙|^𝟐 γ€—+log⁑|π‘₯|=𝐢 𝑦/π‘₯+log⁑|(𝑦 βˆ’ π‘₯)^2/π‘₯^2 |+log⁑|π‘₯|=𝐢 𝑦/π‘₯+log⁑|(π’š βˆ’ 𝒙)^𝟐/𝒙^𝟐 Γ— 𝒙|=𝐢 𝑦/π‘₯+log⁑|(𝑦 βˆ’ π‘₯)^2/π‘₯|=𝐢 π’π’π’ˆβ‘|(π’š βˆ’ 𝒙)^𝟐/𝒙|=πΆβˆ’π‘¦/π‘₯ (π’š βˆ’ 𝒙)^𝟐/𝒙= 𝒆^(π‘ͺ βˆ’ π’š/𝒙) (𝑦 βˆ’ π‘₯)^2/π‘₯ = 𝑒^𝑐 Γ— 𝑒^(βˆ’ 𝑦/π‘₯) (𝑦 βˆ’ π‘₯)^2/π‘₯ = 𝑐 𝑒^(βˆ’ 𝑦/π‘₯) (π’™βˆ’π’š)^𝟐 = 𝒄𝒙 𝒆^(βˆ’ π’š/𝒙) (𝐴𝑠 π‘Ž log⁑𝑏=log⁑〖𝑏^π‘Ž γ€—) (𝐴𝑠 logβ‘π‘Ž+log⁑𝑏=logβ‘π‘Žπ‘)

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo