Check sibling questions


Transcript

Ex 9.4, 15 For each of the differential equations in Exercises from 11 to 15 , find the particular solution satisfying the given condition : 2๐‘ฅ๐‘ฆ+๐‘ฆ^2โˆ’2๐‘ฅ^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=0;๐‘ฆ=2 When ๐‘ฅ=1 Differential equation can be written ๐‘Žs 2๐‘ฅ๐‘ฆ+๐‘ฆ^2โˆ’2๐‘ฅ^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=0 2๐‘ฅ๐‘ฆ+๐‘ฆ^2= 2๐‘ฅ^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ 2๐‘ฅ^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=2๐‘ฅ๐‘ฆ+๐‘ฆ^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ= (2๐‘ฅ๐‘ฆ + ๐‘ฆ^2)/(2๐‘ฅ^2 ) ๐’…๐’š/๐’…๐’™= ๐’š/๐’™ + ๐’š^๐Ÿ/(๐Ÿ๐’™^๐Ÿ ) Let F(x, y) = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฆ/๐‘ฅ + ๐‘ฆ^2/(2๐‘ฅ^2 ) Finding F(๐€x, ๐€y) F(๐œ†x, ๐œ†y) = ๐œ†๐‘ฆ/๐œ†๐‘ฅ + ใ€–(๐œ†๐‘ฆ)ใ€—^2/(2ใ€–(๐œ†๐‘ฅ)ใ€—^(2 ) ) = ๐‘ฆ/๐‘ฅ + ๐‘ฆ^2/(2๐‘ฅ^2 ) = ๐œ†ยฐ F(x, y) โˆด F(x, y) is a homogenous function of degree zero Putting y = vx Diff w.r.t. x ๐’…๐’š/๐’…๐’™ = x ๐’…๐’—/๐’…๐’™ + v Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ= ๐‘ฆ/๐‘ฅ + ๐‘ฆ^2/(2๐‘ฅ^2 ) ๐‘ฃ+๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘ฃ+ ๐‘ฃ^2/2 ๐‘ฅ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘ฃ^2/2 ๐Ÿ๐’…๐’—/๐’—^๐Ÿ = ๐’…๐’™/๐’™ Integrating both sides 2โˆซ1โ–’๐‘‘๐‘ฃ/๐‘ฃ^2 "=" โˆซ1โ–’๐‘‘๐‘ฅ/๐‘ฅ 2โˆซ1โ–’ใ€–๐‘ฃ^(โˆ’2) ๐‘‘๐‘ฃ=logโก|๐‘ฅ|+๐‘ใ€— 2 (๐‘ฃ^(โˆ’2 + 1) )/(โˆ’2 + 1) =logโก|๐‘ฅ|+๐‘ 2 (ใ€–๐‘ฃ ใ€—^(โˆ’1) )/(โˆ’1) =logโก|๐‘ฅ|+๐‘ (โˆ’2 )/๐‘ฃ =logโก|๐‘ฅ|+๐‘ Putting value of v = (๐‘ฆ )/๐‘ฅ (โˆ’๐Ÿ๐’™)/๐’š = log |๐’™| + C Putting x = 1 & y = 2 in (2) (โˆ’2(1))/2 = log |๐Ÿ| + C โˆ’1 = 0 + C C = โˆ’1 Putting value in (2) (โˆ’2๐‘ฅ)/๐‘ฆ = log |๐‘ฅ| + C (โˆ’2๐‘ฅ)/๐‘ฆ = log |๐‘ฅ| โˆ’ 1 y = (โˆ’2๐‘ฅ)/ใ€–log ใ€—โก|๐‘ฅ|" โˆ’ 1 " y = ๐Ÿ๐’™/ใ€–๐Ÿ โˆ’ ๐ฅ๐จ๐  ใ€—โก|๐’™|" "

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo