Check sibling questions


Transcript

Ex 9.4, 12 For each of the differential equations in Exercises from 11 to 15 , find the particular solution satisfying the given condition : ๐‘ฅ^2 ๐‘‘๐‘ฆ+(๐‘ฅ๐‘ฆ+๐‘ฆ^2 ) ๐‘‘๐‘ฅ=0;๐‘ฆ=1 When ๐‘ฅ=1The differential equation can be written ๐‘Žs ๐‘ฅ^2 ๐‘‘๐‘ฆ = โˆ’(xy + y2) dx ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’(๐‘ฅ๐‘ฆ + ๐‘ฆ^2 ))/๐‘ฅ^2 "Let F(x, y) = " ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ " =" (โˆ’(๐‘ฅ๐‘ฆ +๐‘ฆ^2 ))/๐‘ฅ^2 Finding F(๐€x, ๐€y) F(๐œ†x, ๐œ†y) = (โˆ’(๐œ†๐‘ฅ๐œ†๐‘ฆ + ๐œ†^2 ๐‘ฆ^2 ))/ใ€–๐œ†^2 ๐‘ฅใ€—^2 = (โˆ’๐œ†^2 (๐‘ฅ๐‘ฆ + ๐‘ฆ^2 ))/ใ€–๐œ†^2 ๐‘ฅใ€—^2 = (โˆ’(๐‘ฅ๐‘ฆ + ๐‘ฆ^2 ))/๐‘ฅ^2 = ๐œ†ยฐ F(x, y) = F(x, y) = (โˆ’(๐‘ฅ๐‘ฆ +๐‘ฆ^2 ))/๐‘ฅ^2 โˆด F(x, y) is a homogenous function of degree zero Putting y = vx Diff w.r.t. x ๐’…๐’š/๐’…๐’™ = x ๐’…๐’—/๐’…๐’™ + v Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’(๐‘ฅ๐‘ฆ + ๐‘ฆ^2 ))/๐‘ฅ^2 v + (๐’™ ๐’…๐’—)/๐’…๐’™ = (โˆ’(๐’™(๐’—๐’™) + (๐’—๐’™)^๐Ÿ ))/๐’™^๐Ÿ v + (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = (โˆ’(๐‘ฅ^2 ๐‘ฃ + ๐‘ฅ^2 ๐‘ฃ^2))/๐‘ฅ^2 v + (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = โˆ’๐‘ฅ^2 ((๐‘ฃ + ๐‘ฃ^2))/๐‘ฅ^2 v + (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = โˆ’(v2 + v) (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = โˆ’ v2 โˆ’ v โˆ’ v (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = โˆ’(๐‘ฃ^2+2๐‘ฃ) ๐’…๐’—/(๐’—^๐Ÿ + ๐Ÿ๐’—) = โˆ’ ๐’…๐’™/๐’™ Integrating both sides โˆซ1โ–’๐‘‘๐‘ฃ/(๐‘ฃ^2 + 2๐‘ฃ) = โˆ’โˆซ1โ–’๐‘‘๐‘ฅ/๐‘ฅ โˆซ1โ–’๐‘‘๐‘ฃ/(๐‘ฃ^2 + 2๐‘ฃ) = โˆ’ log x + log c โˆซ1โ–’๐‘‘๐‘ฃ/(ใ€–(๐‘ฃใ€—^2 + 2๐‘ฃ + 1) โˆ’ 1) = โˆ’ log x + log c โˆซ1โ–’๐’…๐’—/((๐’— + ๐Ÿ)^๐Ÿ โˆ’ ๐Ÿ^๐Ÿ ) = โˆ’ log x + log c ๐Ÿ/๐Ÿ log (๐’— + ๐Ÿ โˆ’ ๐Ÿ)/(๐’— + ๐Ÿ + ๐Ÿ) = โˆ’ log x + log c 1/2 log ๐‘ฃ/(๐‘ฃ + 2) = โˆ’ log x + log c log โˆš๐‘ฃ/โˆš(๐‘ฃ + 2) = โˆ’ log x + log C log โˆš๐’—/โˆš(๐’— + ๐Ÿ) + log x = log C log (๐‘ฅ โˆš๐‘ฃ)/โˆš(๐‘ฃ + 2) = log C Using โˆซ1โ–’๐‘‘๐‘ฅ/(๐‘ฅ^2 โˆ’ ๐‘Ž^2 ) = 1/2๐‘Ž log |(๐‘ฅ โˆ’ ๐‘Ž)/(๐‘ฅ + ๐‘Ž)|+๐ถ (๐‘ฅโˆš๐‘ฃ)/โˆš(๐‘ฃ + 2) = C Putting value of v i.e ๐‘ฆ/๐‘ฅ (๐’™โˆš(๐’š/๐’™))/โˆš(๐’š/๐’™ + ๐Ÿ) = C โˆš(๐‘ฅ^2 ร— ๐‘ฆ/๐‘ฅ)/โˆš(๐‘ฆ/๐‘ฅ + 2) = C โˆš๐‘ฅ๐‘ฆ/โˆš((๐‘ฆ + 2๐‘ฅ)/๐‘ฅ) = C (๐‘ฅโˆš๐‘ฆ)/โˆš(๐‘ฆ + 2๐‘ฅ) = C ๐‘ฅโˆš๐‘ฆ = Cโˆš(๐‘ฆ+2๐‘ฅ) Squaring both sides x2y = c2(y + 2x) Putting x = 1 & y = 1 in (2) 12(1) = C2(1 + 2) 1 = 3C2 C2 = ๐Ÿ/๐Ÿ‘ Putting value in (2) x2 y = 1/3(y + 2x) 3x2y = y + 2x y + 2x = 3x2y

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo