Ex 9.4, 9 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.4, 9 In each of the Exercise 1 to 10, show that the given differential equation is homogeneous and solve each of them. ๐ฆ ๐๐ฅ+๐ฅ๐๐๐ (๐ฆ/๐ฅ)๐๐ฆโ2๐ฅ ๐๐ฆ=0 Step 1: Find ๐๐ฆ/๐๐ฅ ๐ฆ ๐๐ฅ+๐ฅ๐๐๐ (๐ฆ/๐ฅ)๐๐ฆโ2๐ฅ ๐๐ฆ=0 dy [๐ฅ logโกใ(๐ฆ/๐ฅ)โ2๐ฅ ใ ] = โ y dx ๐๐ฆ/๐๐ฅ = (โ๐ฆ)/(๐ฅ logโกใ(๐ฆ/๐ฅ) โ 2๐ฅ ใ ) ๐๐ฆ/๐๐ฅ = (โ๐ฆ)/(โ๐ฅ(2 โ logโก(๐ฆ/๐ฅ) ) ) ๐ ๐/๐ ๐ = (๐/๐)/(๐ โ ๐๐๐โก(๐/๐) ) Step 2: Putting F(x , y) = ๐๐ฆ/๐๐ฅ and finding F(๐x, ๐y) F(x, y) = (๐ฆ/๐ฅ)/(2 โ logโก(๐ฆ/๐ฅ) ) ๐น(๐๐ฅ,๐๐ฆ) = (๐๐ฆ/๐๐ฅ)/(2 โ logโก(๐๐ฆ/๐๐ฅ) ) = (๐ฆ/๐ฅ)/(2 โ logโก(๐ฆ/๐ฅ) ) = ๐ยฐ [๐น(๐ฅ, ๐ฆ)] Thus, F(x, y) is a homogenous equation function of order zero Therefore ๐๐ฆ/๐๐ฅ is a homogenous differential equation Step 3: Solving ๐๐ฆ/๐๐ฅ by putting y = vx Putting y = vx Diff w.r.t.x ๐๐ฆ/๐๐ฅ = x ๐๐ฃ/๐๐ฅ + v ๐๐ฅ/๐๐ฅ ๐ ๐/๐ ๐ = x ๐ ๐/๐ ๐ + v Putting value of ๐๐ฆ/๐๐ฅ and y = vx in (1) ๐๐ฆ/๐๐ฅ = (๐ฆ/๐ฅ)/(2 โ logโก(๐ฆ/๐ฅ) ) v + (๐ ๐ ๐)/๐ ๐ = (๐๐/๐)/(๐ โ ๐๐๐(๐๐/๐) ) v + (๐ฅ ๐๐ฃ)/๐๐ฅ = ๐ฃ/(2 โ logโก๐ฃ ) (๐ฅ ๐๐ฃ)/๐๐ฅ = ๐ฃ/(2 โ logโก๐ฃ ) โ v (๐ฅ ๐๐ฃ)/๐๐ฅ = (๐ฃ โ 2๐ฃ + ๐ฃ logโก๐ฃ)/(2 โ logโก๐ฃ ) (๐ฅ ๐๐ฃ)/๐๐ฅ = (๐ฃ logโก๐ฃ โ ๐ฃ)/(2 โใ logใโก๐ฃ ) (๐ โ ๐๐๐โก๐)/(๐ ๐๐๐โก๐ ) dv = ๐ ๐/๐ Integrating both sides โซ1โ(2 โ logโก๐ฃ)/(๐ฃ logโก๐ฃ โ ๐ฃ) dv = โซ1โ๐๐ฅ/๐ฅ โซ1โ(2 โ logโก๐ฃ)/(โ๐ฃ ใ(1 โ logใโก๐ฃ)) dv = log |x| + log c โซ1โ(1 + 1 โ logโก๐ฃ)/(โ๐ฃ ใ(1 โ logใโก๐ฃ)) ๐๐ฃ= log |x| + log c โซ1โ1/((โ๐ฃ)(1 โ logโกใ๐ฃ)ใ ) ๐๐ฃ โโซ1โ1/๐ฃ ๐๐ฃ = log |x| + log c โซ1โ1/(๐ฃ(logโก๐ฃ โ 1)) ๐๐ฃ โ โซ1โ1/๐ฃ ๐๐ฃ = log |x| + log c โซ1โ๐ ๐/(๐(๐๐๐โกใ๐ โ ๐)ใ ) โ log |v| = log |x| + log c Put t = log v โ 1 dt = 1/๐ฃ dv So, our equation becomes โซ1โ๐๐ก/๐ก โ log v = log x + log c log t โ log v = log x + log c Putting value of t log (log v โ 1) โlog v + = log x + log c log (log v โ 1) = log x + log c + log v log (log v โ 1) = log Cxv Putting value of v = ๐ฆ/๐ฅ log ("log " ๐ฆ/๐ฅโ1)=logโกใ๐ฅ ๐ ๐ฆ/๐ฅใ log ("log " ๐/๐โ๐)=๐๐๐โกใ ๐๐ใ log ๐ฆ/๐ฅ โ 1 = cy cy = log |๐/๐| โ 1
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo