Ex 9.4, 7 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.4, 7 Show that the given differential equation is homogeneous and solve each of them. {π₯πππ (π¦/π₯)+π¦ sinβ‘(π¦/π₯) }π¦ ππ₯={π¦π ππ(π¦/π₯)βπ₯ cosβ‘(π¦/π₯) }π₯ ππ¦ Step 1: Find ππ¦/ππ₯ {π₯πππ (π¦/π₯)+π¦ sinβ‘(π¦/π₯) }π¦ ππ₯={π¦π ππ(π¦/π₯)βπ₯ cosβ‘(π¦/π₯) }π₯ ππ¦ π π/π π=((π πππβ‘(π/π) + π πππβ‘(π/π))/(π πππβ‘(π/π) β π πππβ‘γ (π/π)γ ))" " π/π Step 2: Put ππ¦/ππ₯ = F (x, y) and find F(πx, πy) F(x, y) = ((π₯ cosβ‘(π¦/π₯) + π¦ sinβ‘(π¦/π₯))/(π¦ sinβ‘(π¦/π₯) β π₯ cosβ‘γ (π¦/π₯)γ )) π¦/π₯ F(πx, πy) = ((ππ₯ cosβ‘( ππ¦/ππ₯) + ππ¦ sinβ‘( ππ¦/ππ₯ ))/(ππ₯ sinβ‘( ππ¦/ππ₯) β ππ₯ cosβ‘γ ( ππ¦/ππ₯ )γ )) ππ¦/ππ₯ = ((π₯ cosβ‘(π¦/π₯) + π¦ sinβ‘(π¦/π₯))/(π¦ sinβ‘(π¦/π₯) β π₯ cosβ‘γ (π¦/π₯)γ ))" " π¦/π₯ = F(x, y) β΄ F(πx, πy) = F(x, y) = πΒ° F(x, y) Hence, F(x, y) is a homogenous Function of with degree zero So, ππ¦/ππ₯ is a homogenous differential equation. Step 3: Solving ππ¦/ππ₯ by putting y = vx Putting y = vx. Differentiating w.r.t.x ππ¦/ππ₯ = x ππ£/ππ₯+π£ππ₯/ππ₯ π π/π π = π π π/π π + v Putting value of ππ¦/ππ₯ and y = vx in (1) ππ¦/ππ₯=((π₯ cosβ‘(π¦/π₯) + π¦ sinβ‘(π¦/π₯))/(π¦ sinβ‘(π¦/π₯) β π₯ cosβ‘γ (π¦/π₯)γ ))" " π¦/π₯ v + x π π/π π = (π πππβ‘(ππ/π) + ππ πππβ‘(ππ/π))/(ππ πππβ‘(ππ/π) β π πππβ‘(ππ/π) ) Γ ππ/π v + x ππ£/ππ₯ = [π₯πππ π£ + π£π₯ π ππ π£]π£/(π£π₯ sinβ‘γπ£ β π₯ cosβ‘π£ γ ) v + x ππ£/ππ₯ = π₯[πππ π£ + π£ π ππ π£]π£/π₯[π£ π ππ π£ βγ cosγβ‘π£ ] v + x ππ£/ππ₯ = π£[πππ π£ + π£ π ππ π£]/(π£ π ππ π£ βγ cosγβ‘π£ ) x ( ππ£)/ππ₯ = (π£ cosβ‘π£ + π£^2 sinβ‘π£)/(π£ π ππ π£ βγ cosγβ‘π£ ) β v x ( ππ£)/ππ₯ = (π£ cosβ‘π£ + π£^2 sinβ‘π£ β π£(π£ sinβ‘γπ£ γβ cosβ‘π£ ))/(π£ π ππ π£ βγ cosγβ‘π£ ) x ( ππ£)/ππ₯ = (π£ cosβ‘π£ + π£^2 sinβ‘π£ β π£^2 sinβ‘γπ£ + π£ cosβ‘π£ γ)/(π£ π ππ π£ βγ cosγβ‘π£ ) ( π₯ππ£)/ππ₯ = (2π£ cosβ‘π£)/(π£ π ππ π£ βγ cosγβ‘π£ ) ( π π)/π π = ( π)/π [(ππ πππβ‘π)/(π πππ π βγ πππγβ‘π )] (π£ sinβ‘γπ£ β cosβ‘π£ γ)/(π£ γ cosγβ‘π£ ) dv = 2 ( ππ₯)/π₯ Integrating both sides. β«1β(π πππβ‘γπ βπππβ‘π γ)/(π γ πππγβ‘π ) dv = 2 ( π π)/π β«1β(π£ sinβ‘γπ£ γ)/(π£ γ cosγβ‘π£ ) dv β β«1βcosβ‘π£/(π£ γ cosγβ‘π£ ) dv = 2β«1βππ₯/π₯ β«1βsinβ‘γπ£ γ/cosβ‘π£ dv β β«1βππ£/π£ dv = 2β«1βππ₯/π₯ β«1βtanβ‘π£ dv β β«1βππ£/π£ dv = 2β«1βππ₯/π₯ logβ‘γ|secβ‘π₯ |βlogβ‘|π£|=2 logβ‘|π₯| γ + C πππβ‘γ|πππβ‘π/π|=πππβ‘γπ^π γ+π γ logβ‘γ|secβ‘π₯/π£|=logβ‘γπ₯^2 γ+logβ‘π γ logβ‘γ|secβ‘π₯/π£|=logβ‘γππ₯^2 γ γ Put v = π¦/π₯ log |π¬ππβ‘(π/π)/(π/π)| = log (cx2) |γsec γβ‘γ(π¦/π₯) γ/(π¦/π₯)| = cx2 |γsec γβ‘γ(π¦/π₯) γ | = cx2 Γ π¦/π₯ |γπππ γβ‘(π/π) |= C 1/|cosβ‘(π¦/π₯) | = C xy xy |πππ (π¦/π₯)| = c1 xy πππ|π/π| = c1
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo