Ex 9.4, 6 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.4, 6 Show that the given differential equation is homogeneous and solve each of them. ๐ฅ ๐๐ฆโ๐ฆ ๐๐ฅ=โ(๐ฅ^2+๐ฆ^2 ) ๐๐ฅ Step 1: Find ๐๐ฆ/๐๐ฅ x dy โ y dx = โ(๐ฅ^2+๐ฆ^2 ) dx x dy = โ(๐ฅ^2+๐ฆ^2 ) dx + y dx x dy = (โ(๐ฅ^2+๐ฆ^2 )+๐ฆ) dx ๐ ๐/๐ ๐ = (โ(๐^๐ + ๐^๐ ) + ๐)/๐ Step 2: Put ๐๐ฆ/๐๐ฅ = F(x, y) and find F(๐x, ๐y) F(x, y) = ๐๐ฆ/๐๐ฅ = (โ(๐ฅ^(2 )+ ๐ฆ^2 ) + ๐ฆ)/๐ฅ F(๐ x, ๐y) = (โ(ใ(๐๐ฅ)ใ^2 + (๐^2 ๐ฆ^2 ) )+ ๐๐ฆ)/๐๐ฅ = (โ(๐^2 ๐ฅ^2 + ๐^2 ๐ฆ^2 ) + ๐๐ฆ)/๐๐ฅ = (โ(๐^2 (๐ฅ^2 + ๐ฆ^2)) + ๐๐ฆ)/๐๐ฅ= (๐โ(๐ฅ^2 + ๐ฆ^2 ) + ๐๐ฆ)/๐๐ฅ = (โ(๐ฅ^2 + ๐ฆ^2 ) + ๐ฆ)/๐ฅ = F(x, y) Hence, F(๐x, ๐y) = F(x, y) = ๐ยฐ F(x, y) Hence, F(x, y) is a homogenous Function of with degree 0 So, ๐๐ฆ/๐๐ฅ is a homogenous differential equation. Step 3 - Solving ๐๐ฆ/๐๐ฅ by putting y = vx Putting y = vx. Differentiating w.r.t.x ๐๐ฆ/๐๐ฅ = ๐ฅ ๐๐ฃ/๐๐ฅ+๐ฃ ๐๐ฅ/๐๐ฅ ๐ ๐/๐ ๐ = ๐ ๐ ๐/๐ ๐ + ๐ Putting value of ๐๐ฆ/๐๐ฅ and y = vx in (1) ๐๐ฆ/๐๐ฅ=(โ(๐ฅ^2 + ๐ฆ^2 )+ ๐ฆ)/๐ฅ x ๐๐ฃ/๐๐ฅ+๐ฃ=(โ(๐ฅ^2 + (๐ฃ๐ฅ)^2 ) + (๐ฃ๐ฅ))/๐ฅ x ๐๐ฃ/๐๐ฅ+๐ฃ=(โ(๐ฅ^2 + ๐ฅ^2 ๐ฃ^2 ) + ๐ฃ๐ฅ)/๐ฅ x ๐๐ฃ/๐๐ฅ+๐ฃ =(โ(๐ฅ^2 (1 + ๐ฃ^2)) + ๐ฃ๐ฅ)/๐ฅ x ๐๐ฃ/๐๐ฅ+๐ฃ =(๐ฅโ(1 + ๐ฃ^2 ) + ๐ฃ๐ฅ)/๐ฅ x ๐๐ฃ/๐๐ฅ+๐ฃ =(๐ฅ(โ(1 + ๐ฃ^2 ) + ๐ฃ))/๐ฅ x ๐ ๐/๐ ๐+๐= โ(๐+๐^๐ )+๐ x ๐๐ฃ/๐๐ฅ= โ(1+๐ฃ^2 )+๐ฃ โ ๐ฃ x ๐๐ฃ/๐๐ฅ= โ(1+๐ฃ^2 ) ๐๐ฃ/๐๐ฅ= โ(1 + ๐ฃ^2 )/๐ฅ ๐ ๐/โ(๐ + ๐^๐ )= ๐ ๐/๐ Integrating both sides. โซ1โ๐๐ฃ/โ(1 + ๐ฃ^2 ) = โซ1โ๐๐ฅ/๐ฅ โซ1โ๐ ๐/โ(๐ + ๐^๐ ) = log |๐|+๐ We know that โซ1โ๐๐ฃ/โ(๐^2 + ๐ฅ^2 ) =๐๐๐|๐ฅ+โ(๐ฅ^2+๐^2 )|+๐ Putting a = 1, x = v log |๐ฃ+โ(๐ฃ^2+1)| =๐๐๐|๐ฅ|+๐ log |๐ฃ+โ(๐ฃ^2+1)| =๐๐๐|๐๐ฅ| v + โ(๐^๐+๐) = cx Putting v = ๐ฆ/๐ฅ ๐/๐+โ((๐/๐)^๐+๐)=๐๐ ๐ฆ/๐ฅ+โ(๐ฆ^2/๐ฅ^2 +1)=๐๐ฅ ๐ฆ/๐ฅ+โ((๐ฆ^2 + ๐ฅ^2)/๐ฅ^2 )=๐๐ฅ ๐ฆ/๐ฅ+โ(๐ฆ^2 + ๐ฅ^2 )/๐ฅ=๐๐ฅ ๐+โ(๐^๐ ใ+ ๐ใ^๐ ) =๐๐^๐ โด General solution is ๐+โ(๐^๐ ใ+ ๐ใ^๐ ) =๐๐^๐
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo