Check sibling questions


Transcript

Ex 9.4, 6 Show that the given differential equation is homogeneous and solve each of them. ๐‘ฅ ๐‘‘๐‘ฆโˆ’๐‘ฆ ๐‘‘๐‘ฅ=โˆš(๐‘ฅ^2+๐‘ฆ^2 ) ๐‘‘๐‘ฅ Step 1: Find ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ x dy โˆ’ y dx = โˆš(๐‘ฅ^2+๐‘ฆ^2 ) dx x dy = โˆš(๐‘ฅ^2+๐‘ฆ^2 ) dx + y dx x dy = (โˆš(๐‘ฅ^2+๐‘ฆ^2 )+๐‘ฆ) dx ๐’…๐’š/๐’…๐’™ = (โˆš(๐’™^๐Ÿ + ๐’š^๐Ÿ ) + ๐’š)/๐’™ Step 2: Put ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = F(x, y) and find F(๐œ†x, ๐œ†y) F(x, y) = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆš(๐‘ฅ^(2 )+ ๐‘ฆ^2 ) + ๐‘ฆ)/๐‘ฅ F(๐œ† x, ๐œ†y) = (โˆš(ใ€–(๐œ†๐‘ฅ)ใ€—^2 + (๐œ†^2 ๐‘ฆ^2 ) )+ ๐œ†๐‘ฆ)/๐œ†๐‘ฅ = (โˆš(๐œ†^2 ๐‘ฅ^2 + ๐œ†^2 ๐‘ฆ^2 ) + ๐œ†๐‘ฆ)/๐œ†๐‘ฅ = (โˆš(๐œ†^2 (๐‘ฅ^2 + ๐‘ฆ^2)) + ๐œ†๐‘ฆ)/๐œ†๐‘ฅ= (๐œ†โˆš(๐‘ฅ^2 + ๐‘ฆ^2 ) + ๐œ†๐‘ฆ)/๐œ†๐‘ฅ = (โˆš(๐‘ฅ^2 + ๐‘ฆ^2 ) + ๐‘ฆ)/๐‘ฅ = F(x, y) Hence, F(๐œ†x, ๐œ†y) = F(x, y) = ๐œ†ยฐ F(x, y) Hence, F(x, y) is a homogenous Function of with degree 0 So, ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ is a homogenous differential equation. Step 3 - Solving ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ by putting y = vx Putting y = vx. Differentiating w.r.t.x ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ ๐‘‘๐‘ฅ/๐‘‘๐‘ฅ ๐’…๐’š/๐’…๐’™ = ๐’™ ๐’…๐’—/๐’…๐’™ + ๐’— Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(โˆš(๐‘ฅ^2 + ๐‘ฆ^2 )+ ๐‘ฆ)/๐‘ฅ x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ=(โˆš(๐‘ฅ^2 + (๐‘ฃ๐‘ฅ)^2 ) + (๐‘ฃ๐‘ฅ))/๐‘ฅ x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ=(โˆš(๐‘ฅ^2 + ๐‘ฅ^2 ๐‘ฃ^2 ) + ๐‘ฃ๐‘ฅ)/๐‘ฅ x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ =(โˆš(๐‘ฅ^2 (1 + ๐‘ฃ^2)) + ๐‘ฃ๐‘ฅ)/๐‘ฅ x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ =(๐‘ฅโˆš(1 + ๐‘ฃ^2 ) + ๐‘ฃ๐‘ฅ)/๐‘ฅ x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ =(๐‘ฅ(โˆš(1 + ๐‘ฃ^2 ) + ๐‘ฃ))/๐‘ฅ x ๐’…๐’—/๐’…๐’™+๐’—= โˆš(๐Ÿ+๐’—^๐Ÿ )+๐’— x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ= โˆš(1+๐‘ฃ^2 )+๐‘ฃ โˆ’ ๐‘ฃ x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ= โˆš(1+๐‘ฃ^2 ) ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ= โˆš(1 + ๐‘ฃ^2 )/๐‘ฅ ๐’…๐’—/โˆš(๐Ÿ + ๐’—^๐Ÿ )= ๐’…๐’™/๐’™ Integrating both sides. โˆซ1โ–’๐‘‘๐‘ฃ/โˆš(1 + ๐‘ฃ^2 ) = โˆซ1โ–’๐‘‘๐‘ฅ/๐‘ฅ โˆซ1โ–’๐’…๐’—/โˆš(๐Ÿ + ๐’—^๐Ÿ ) = log |๐’™|+๐’„ We know that โˆซ1โ–’๐‘‘๐‘ฃ/โˆš(๐‘Ž^2 + ๐‘ฅ^2 ) =๐‘™๐‘œ๐‘”|๐‘ฅ+โˆš(๐‘ฅ^2+๐‘Ž^2 )|+๐‘ Putting a = 1, x = v log |๐‘ฃ+โˆš(๐‘ฃ^2+1)| =๐‘™๐‘œ๐‘”|๐‘ฅ|+๐‘ log |๐‘ฃ+โˆš(๐‘ฃ^2+1)| =๐‘™๐‘œ๐‘”|๐‘๐‘ฅ| v + โˆš(๐’—^๐Ÿ+๐Ÿ) = cx Putting v = ๐‘ฆ/๐‘ฅ ๐’š/๐’™+โˆš((๐’š/๐’™)^๐Ÿ+๐Ÿ)=๐’„๐’™ ๐‘ฆ/๐‘ฅ+โˆš(๐‘ฆ^2/๐‘ฅ^2 +1)=๐‘๐‘ฅ ๐‘ฆ/๐‘ฅ+โˆš((๐‘ฆ^2 + ๐‘ฅ^2)/๐‘ฅ^2 )=๐‘๐‘ฅ ๐‘ฆ/๐‘ฅ+โˆš(๐‘ฆ^2 + ๐‘ฅ^2 )/๐‘ฅ=๐‘๐‘ฅ ๐’š+โˆš(๐’š^๐Ÿ ใ€–+ ๐’™ใ€—^๐Ÿ ) =๐’„๐’™^๐Ÿ โˆด General solution is ๐’š+โˆš(๐’š^๐Ÿ ใ€–+ ๐’™ใ€—^๐Ÿ ) =๐’„๐’™^๐Ÿ

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo