Check sibling questions

   


Transcript

Misc 8 Choose the correct answer. If x, y, z are nonzero real numbers, then the inverse of matrix A = [โ– 8(x&0&0@0&y&0@0&0&z)] is A. [โ– 8(๐‘ฅ^(โˆ’1)&0&0@0&๐‘ฆ^(โˆ’1)&0@0&0&๐‘ง^(โˆ’1) )] B. xyz[โ– 8(๐‘ฅ^(โˆ’1)&0&0@0&๐‘ฆ^(โˆ’1)&0@0&0&๐‘ง^(โˆ’1) )] C. 1/xyz [โ– 8(x&0&0@0&y&0@0&0&z)] D. 1/xyz [โ– 8(1&0&0@0&1&0@0&0&1)] Given A = [โ– 8(x&0&0@0&y&0@0&0&z)] We have to find A-1 We know that A-1 = ๐Ÿ/(|๐€|) adj (A) exists if |A| โ‰  0 Calculating |A| |A| = |โ– 8(x&0&0@0&y&0@0&0&z)| = x |โ– 8(๐‘ฆ&0@0&๐‘ง)| โ€“ 0 |โ– 8(0&0@0&๐‘ง)| + 0 |โ– 8(0&๐‘ฆ@0&0)| = x (yz โ€“ 0) โ€“ 0 (0 โ€“ 0) + 0 (0 โ€“ 0) = x(yz) + 0 + 0 = xyz Since |A| โ‰  0 Thus, A-1 exist Now, adj A = [โ– 8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] A = [โ– 8(๐‘ฅ&0&0@0&๐‘ฆ&0@0&0&๐‘ง)] M11 = |โ– 8(๐‘ฆ&0@0&๐‘ง)| = yz โ€“ 0 = yz M12 = |โ– 8(0&0@0&๐‘ง)| = 0 โ€“ 0 = 0 M13 = |โ– 8(0&y@0&0)| = 0 โ€“ 0 = โ€“ 0 M21 = |โ– 8(0&0@0&๐‘ง)| = 0 โ€“ 0 = 0 M22 = |โ– 8(x&0@0&๐‘ง)| = xz โ€“ 0 = xz M23 = |โ– 8(x&0@0&0)| = 0 โ€“ 0 = 0 M31 = |โ– 8(0&0@0&z)| = 0 โ€“ 0 = 0 M32 = |โ– 8(x&0@0&0)| = 0 โ€“ 0 = 0 M33 = |โ– 8(๐‘ฅ&0@0&y)| = x y โ€“ 0 = xy A11 = ( โ€“ 1)1 + 1 M11 = ( โ€“ 1)2 y z = yz A12 = ( โ€“ 1)1+2 M12 = ( โ€“ 1)3 0 = 0 A13 = ( โ€“ 1)1+3 M13 = ( โ€“ 1)4 0 = โ€“ 0 A21 = ( โ€“ 1)2+1 M21 = ( โ€“ 1)3. 0 = 0 A22 = ( โ€“ 1)2+2 M22 = ( โ€“ 1)4 x z = x z A23 = ( โ€“ 1)2+3 M23 = ( โ€“ 1)5 0 = 0 A31 = ( โ€“ 1)3+1 M31 = ( โ€“ 1)4 0 = 0 A32 = ( โ€“ 1)3+2 M32 = ( โ€“ 1)5 0 = 0 A33 = ( โ€“ 1)3+3 M33 = ( โ€“ 1)6 xy = xy Thus, adj (A) = [โ– 8(A11&A21&A31@A12&A22&A32@A33&A23&A33)] = [โ– 8(๐‘ฅ ๐‘ฆ&0&0@0&๐‘ง ๐‘ฆ&0@0&0&๐‘ฅ ๐‘ฆ)] Now, A-1 = 1/(|A|) adj (A) = ๐Ÿ/๐’™๐’š๐’› [โ– 8(๐’™ ๐’š&๐ŸŽ&๐ŸŽ@๐ŸŽ&๐’› ๐’š&๐ŸŽ@๐ŸŽ&๐ŸŽ&๐’™ ๐’š)] = [โ– 8(๐‘ฆ๐‘ง/๐‘ฅ๐‘ฆ๐‘ง&0&0@0&๐‘ฆ๐‘ง/๐‘ฅ๐‘ฆ๐‘ง&0@0&0&๐‘ฆ๐‘ง/๐‘ฅ๐‘ฆ๐‘ง)] = [โ– 8(๐Ÿ/๐’™&๐ŸŽ&๐ŸŽ@๐ŸŽ&๐Ÿ/๐’š&๐ŸŽ@๐ŸŽ&๐ŸŽ&๐Ÿ/๐’›)] = [โ– 8(๐‘ฅ^(โˆ’1)&0&0@0&๐‘ฆ^(โˆ’1)&0@0&0&๐‘ง^(โˆ’1) )] Thus, the correct option is A

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo