Check sibling questions


Transcript

Misc 17 (Method 1) Choose the correct answer. If a, b, c, are in A.P., then the determinant |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@๐‘ฅ+3&๐‘ฅ+4&๐‘ฅ+2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| is A. 0 B. 1 C. x D. 2x Since a, b & c are in A.P Then, b โ€“ a = c โ€“ b b โ€“ a โ€“ c + b = 0 2b โ€“ a โ€“ c = 0 (Common difference is equal) โ€ฆ(1) Solving |โ– 8(x+2&x+3&x+2a@x+3&x+4&x+2b@x+4&x+5&x+2c)| Multiplying and dividing 2 = 2/2 |โ– 8(x+2&x+3&x+2a@x+3&x+4&x+2b@x+4&x+5&x+2c)| Multiplying R2 by 2 = 1/2 |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@๐Ÿ(๐‘ฅ+3)&๐Ÿ(๐‘ฅ+4)&๐Ÿ(๐‘ฅ+2๐‘)@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = 1/2 |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@2๐‘ฅ+6&2๐‘ฅ+8&2๐‘ฅ+4๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| Applying R2 โ†’ R2 โ€“ R1 โ€“ R3 = 1/2 |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@2๐‘ฅ+6โˆ’(๐‘ฅ+2)โˆ’(๐‘ฅ+4 )&2๐‘ฅ+8โˆ’(๐‘ฅ+3)โˆ’(๐‘ฅ+5)&2๐‘ฅ+4๐‘โˆ’(๐‘ฅ+2๐‘Ž)โˆ’(๐‘ฅ+2๐‘)@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = 1/2 |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@2๐‘ฅ+6โˆ’๐‘ฅโˆ’2โˆ’๐‘ฅโˆ’4&2๐‘ฅ+8โˆ’๐‘ฅโˆ’3โˆ’๐‘ฅโˆ’5&2๐‘ฅ+4๐‘โˆ’๐‘ฅโˆ’2๐‘Žโˆ’๐‘ฅโˆ’2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = 1/2 |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@0&0&4๐‘โˆ’2๐‘Žโˆ’2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = 1/2 |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@0&0&2(๐Ÿ๐’ƒโˆ’๐’‚โˆ’๐’„)@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = 1/2 |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@0&0&2(๐ŸŽ)@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| (From (1): 2b โ€“ b โ€“ c = 0) = 1/2 |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@0&0&0@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| If any row or column of determinant are zero, then value of determinant is also zero. = 1/2 ร— 0 = 0 Thus, the value of determinant is 0 Correct Answer is A Misc 17 (Method 2) Choose the correct answer. If a, b, c, are in A.P., then the determinant |โ– 8(x+2&x+3&x+2a@x+3&x+4&x+2b@x+4&x+5&x+2c)| is A. 0 B. 1 C. x D. 2x Since a, b & c are in A.P Then a โ€“ b = c โ€“ b b + b = c + a 2b = a + c (Common difference is equal) โ€ฆ(1) Consider |โ– 8(๐‘ฅ+2&๐‘ฅ+3&๐‘ฅ+2๐‘Ž@๐‘ฅ+3&๐‘ฅ+4&๐‘ฅ+2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| Applying R1 โ†’R1 + R3 โ€“ 2R2 = |โ– 8((๐‘ฅ+2)+(๐‘ฅ+4)โˆ’2(๐‘ฅ+3)&(๐‘ฅ+3)+(๐‘ฅ+5)โˆ’2(๐‘ฅ+4)&(๐‘ฅ+2๐‘Ž)+(๐‘ฅ+2๐‘)โˆ’2(๐‘ฅ+2๐‘)@๐‘ฅ+3&๐‘ฅ+4&๐‘ฅ+2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = |โ– 8(๐‘ฅ+2+๐‘ฅ+4โˆ’2๐‘ฅโˆ’6&๐‘ฅ+3+๐‘ฅ+5โˆ’2๐‘ฅโˆ’8&๐‘ฅ+2๐‘Ž+๐‘ฅ+2๐‘โˆ’2๐‘ฅโˆ’4๐‘@๐‘ฅ+3&๐‘ฅ+4&๐‘ฅ+2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = |โ– 8(2๐‘ฅโˆ’2๐‘ฅ+6โˆ’6&2๐‘ฅโˆ’2๐‘ฅ+8โˆ’8&2๐‘ฅโˆ’2๐‘ฅ+2๐‘Ž+2๐‘โˆ’4๐‘@๐‘ฅ+3&๐‘ฅ+4&๐‘ฅ+2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = |โ– 8(0&0&0+2(๐’‚+๐’„โˆ’2๐‘)@๐‘ฅ+3&๐‘ฅ+4&๐‘ฅ+2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = |โ– 8(0&0&2(๐Ÿ๐’ƒโˆ’2๐‘)@๐‘ฅ+3&๐‘ฅ+4&๐‘ฅ+2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| = |โ– 8(0&0&0@๐‘ฅ+3&๐‘ฅ+4&๐‘ฅ+2๐‘@๐‘ฅ+4&๐‘ฅ+5&๐‘ฅ+2๐‘)| If any row or column of determinant are zero, then value of determinant is also zero. = 0 Hence, value of determinant is 0 Correct Answer is A (From (1): 2b = a + c)

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo