Misc 7 - Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Misc 7 Solve the system of the following equations 2/x + 3/y + 10/z = 4 4/x + 6/y + 5/z = 1 6/x + 9/y + 20/z = 2 The system of equations are 2/x + 3/y + 10/z = 4 4/x + 6/y + 5/z = 1 6/x + 9/y + 20/z = 2 Now let ๐/๐ = u , ๐/๐ = v , & ๐/๐ = w The system of equations become 2u + 3v + 10w = 4 4u โ 6v + 5w = 1 6u + 9v โ 20w = 2 Writing equation as AX = B [โ 8(2&3&10@4&โ6&5@6&9&โ20)] [โ 8(๐ข@๐ฃ@๐ค)] = [โ 8(4@1@2)] Hence A = [โ 8(2&3&10@4&โ6&5@6&9&โ20)] , X = [โ 8(๐ข@๐ฃ@๐ค)] & B = [โ 8(4@1@2)] Calculating |A| |A| = |โ 8(2&3&10@4&โ6&5@6&9&โ20)| = 2 |โ 8(โ6&5@9&โ20)| โ 3 |โ 8(4&5@6&โ20)| + 10 |โ 8(4&โ6@6&9)| = 2 (120 โ 45) โ3 (โ80 โ 30) + 10 ( 36 + 36) = 2 (75) โ3 (โ110) + 10 (72) = 150 + 330 + 720 = 1200 โด |A|โ 0 So, the system of equation is consistent & has a unique solution Now, AX = B X = A-1 B Calculating A-1 Now, A-1 = 1/(|A|) adj (A) adj (A) = [โ 8(A11&A12&A13@A21&A22&A23@A31&A32&A33)]^โฒ = [โ 8(A11&A21&A31@A12&A22&A32@A13&A23&A33)] A = [โ 8(2&3&10@4&โ6&5@6&9&โ20)] M11 = |โ 8(โ6&5@9&โ20)| = 120 โ 45 = 75 M12 = |โ 8(4&5@6&โ20)| = (โ80 โ 30) = โ110 M13 = |โ 8(4&โ6@6&9)| = 36 โ36 = 72 M21 = |โ 8(3&10@9&โ20)| = โ60 โ 90 = โ150 M22 = |โ 8(2&10@6&โ20)| = โ40 โ 60 = โ100 M23 = |โ 8(2&3@6&9)| = 18 โ 18 = 0 M31 = |โ 8(3&10@โ6&5)| = 15 + 60 = 75 M32 = |โ 8(2&10@4&5)| = 10 โ 40 = โ30 M33 = |โ 8(2&3@4&โ6)| = โ12 โ 12 = โ24 Now, A11 = ใ"(โ1)" ใ^(1+1) M11 = (โ1)2 . 75 = 75 A12 = ใ"(โ1)" ใ^"1+2" M12 = ใ"(โ1)" ใ^3 . (โ110) = 110 A13 = ใ(โ1)ใ^(1+3) M13 = ใ(โ1)ใ^4 . (72) = 72 A21 = ใ(โ1)ใ^(2+1) M21 = ใ(โ1)ใ^3 . (โ150) = 150 A22 = ใ(โ1)ใ^(2+2) M22 = (โ1)4 . (โ100) = โ100 A23 = ใ(โ1)ใ^(2+3). M23 = ใ(โ1)ใ^5. 0 = 0 A31 = ใ(โ1)ใ^(3+1). M31 = ใ(โ1)ใ^4 . 75 = 75 A32 = ใ(โ1)ใ^(3+2) . M32 = ใ(โ1)ใ^5. (โ30) = 30 A33 = ใ(โ1)ใ^(3+3) . M33 = (โ1)6 . โ24 = โ24 Thus, adj A = [โ 8(75&150&75@110&โ110&30@72&0&โ24)] Now, A-1 = 1/(|A|) adj A A-1 = ๐/๐๐๐๐ [โ 8(๐๐&๐๐๐&๐๐@๐๐๐&โ๐๐๐&๐๐@๐๐&๐&โ๐๐)] Also, X = Aโ1 B Putting Values [โ 8(๐ข@๐ฃ@๐ค)]= 1/1200 [โ 8(75&150&75@110&โ110&30@72&0&โ24)] [โ 8(4@1@2)] [โ 8(๐ข@๐ฃ@๐ค)]= 1/1200 [โ 8(75(4)+150(1)+75(4)@110(4)+(โ110)(1)+30(1)@72(4)+0(1)+(โ24)2)] [โ 8(๐ข@๐ฃ@๐ค)] = 1/1200 [โ 8(300+150+150@440โ100+60@288+0โ48)] = 1/1200 [โ 8(600@400@140)] [โ 8(๐@๐@๐)] = [โ 8(๐/๐@๐/๐@๐/๐)] Hence u = 1/2 , v = 1/3 , & w = 1/5 Thus, x = 2, y = 3 & z = 5 Putting u = ๐/๐ 1/2 = 1/๐ฅ x = 2 Putting v = ๐/๐ 1/3 = 1/๐ฆ y = 3 Putting w = ๐/๐ 1/5 = 1/๐ง z = 5
Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5
Misc 6
Misc 7 Important You are here
Misc 8 (MCQ)
Misc 9 (MCQ) Important
Matrices and Determinants - Formula Sheet and Summary Important
Question 1 Important
Question 2
Question 3
Question 4 Important
Question 5 Important
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo