Check sibling questions


Transcript

Question 9 Using properties of determinants, prove that: |■8(sin⁡α&cos⁡α&cos⁡〖(α+δ)〗@sin⁡β&cos⁡β&cos⁡〖(β+δ)〗@sin⁡γ&cos⁡γ&cos⁡〖(γ+δ)〗 )| = 0 Let ∆ = |■8(sin⁡α&cos⁡α&cos⁡〖(α+δ)〗@sin⁡β&cos⁡β&cos⁡〖(β+δ)〗@sin⁡γ&cos⁡γ&cos⁡〖(γ+δ)〗 )| Using cos (x + y) = cos x cos y – sin x sin y = |■8(sin⁡α&cos⁡α&cos𝛼 cos⁡〖δ −sin⁡〖𝛼 sin⁡𝛿 〗 〗@sin⁡β&cos⁡β&cos⁡𝛽 cos⁡〖𝛿−sin⁡〖𝛽 sin⁡𝛿 〗 〗@sin⁡γ&cos⁡γ&cosγcos 𝛿 −sin⁡〖γ sin⁡𝛿 〗 )| Expressing elements of 2nd row as sum of two elements = |■8(sin⁡α&cos⁡α&cos 𝛼 cos⁡〖δ 〗@sin⁡β&cos⁡β&cos⁡𝛽 cos⁡𝛿@sin⁡γ&cos⁡γ&cos γ cos 𝛿 )| + |■8(sin⁡α&cos⁡α&−sin⁡〖𝛼 sin⁡𝛿 〗@sin⁡β&cos⁡β&−sin⁡〖𝛽 sin⁡𝛿 〗@sin⁡γ&cos⁡γ&−sin⁡〖γ sin⁡𝛿 〗 )| Using Property : If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms ,then the determinant is expressed as a sum of two (or more) determinants. Taking cos 𝛿 common from C3 = cos⁡〖δ 〗 |■8(sin⁡α&cos⁡α&cos 𝛼@sin⁡β&cos⁡β&cos⁡𝛽@sin⁡γ&cos⁡γ&cos γ )| + (−sin⁡𝛿) |■8(sin⁡α&cos⁡α&sin⁡𝛼@sin⁡β&cos⁡β&sin⁡𝛽@sin⁡γ&cos⁡γ&sin⁡γ )| = cos⁡〖δ 〗(0) + (−sin⁡δ) (0) = 0 = R.H.S Hence proved Using Property: If any two row or column are identical, then value of determinant is zero

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo