Question 7 - Miscellaneous - Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Misc. 13 Using properties of determinants, prove that: 3a a+b a+c b+a 3b b+c c+a c+b 3c = 3 ( a + b + c) (ab + bc + ac) Taking L.H. S 3a a+b a+c b+a 3b b+c c+a c+b 3c Applying C1 C1 + C2 + C3 = 3a a+b a+c a+b a+c b+a 3b b+c 3b b+c c+a c+b 3c c+b 3c = + + a+b a+c + + 3b b+c + + c+b 3c Taking (a + b + c) common from C1 = ( + + ) 1 a+b a+c 1 3b b+c 1 c+b 3c Applying R1 R1 R2 = (a+b+c) a+b 3b a+c ( b+c) 1 3b b+c 1 c+b 3c = (a+b+c) a 2b a+c+b c 1 3b b+c 1 c+b 3c = (a+b+c) 0 a 2b a+b 1 3b b+c 1 c+b 3c Applying R2 R2 R3 =(a+b+c) 0 a 2b a+b 3b b+c 1 c+b 3c 3c =(a+b+c) 0 a 2b a+b 2b+c b 2c 1 c+b 3c Expanding determinant along C1 = (a + b + c ) 0 2b+c b 2c c+b 3c 0 a 2b a+b c+b 3c +1 a 2b a+b 2b+c b 2c = (a + b + c ) b+2c a+2b (2b+c)( a+b) = (a + b + c ) b+2c a+2b (2b+c)( a+b) = (a + b + c ) ab+2b2+2ca+4ab (2b( a+b) c( a+b) = (a + b + c ) ab+2b2+2ca+4ab ( 2ba+2b2+ac bc) = (a + b + c) ab+2b2+2ca+4ab ( 2ba+2b2+ac bc) = (a + b + c ) ab+2b2+2ca+4ab+2ba 2b2+ca cb = (a + b + c ) ab+2ba+2ca+ +4 +2 2 2 2 = (a + b + c ) (3ab + 3ac + 3bc + 0) = (a + b + c ) (3ab + 3ac + 3bc) = (a + b + c ). 3 (ab + ac + bc) = 3 (a + b + c ) (ab + ac + bc) = R.H.S Hence Proved
Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5
Misc 6
Misc 7 Important
Misc 8 (MCQ)
Misc 9 (MCQ) Important
Matrices and Determinants - Formula Sheet and Summary Important
Question 1 Important
Question 2
Question 3
Question 4 Important
Question 5 Important
Question 6 Important
Question 7 You are here
Question 8
Question 9 Important
Question 10 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo