Check sibling questions


Transcript

Question 5 Using properties of determinants, prove that: |■8(𝛼&∝^2&β+𝛾@β&β2&𝛾+𝛼@𝛾&𝛾2&𝛼+β)| = (β – 𝛾) (𝛾 – 𝛼) (𝛼 – β) (a + β + 𝛾) Solving L.H.S |■8(𝛼&∝^2&β+y@β&β2&y+𝛼@y&y2&𝛼+β)| Applying C1→ C1 + C3 = |■8(𝜶+𝜷+𝜸&𝛼2&β+𝛾@𝛃+𝜸+𝜶&β2&𝛾+𝛼@𝜸+𝜶+𝜷&𝛾2&𝛼+β)| Taking (α + β + 𝜸) common from C1 = (α + β + 𝜸) |■8(1&𝛼2&β+𝛾@1&β2&𝛾+𝛼@1&𝛾2&𝛼+β)| Applying R2→ R2 – R1 = (α + β + 𝛾) |■8(1&a2&β+𝛾@𝟏−𝟏&β2−a2&𝛾+𝛼−𝛽−𝛾@1&y2&𝛼+𝛽)| = (α + β + 𝛾) |■8(1&a2&β+𝛾@𝟎&(β−a)(𝛽+𝛼)&−(𝛽−𝛼)@1&y2&𝛼+𝛽)| Taking (β – α ) common from R1 = (α + β + 𝛾)(β – α) |■8(1&a2&β+𝛾@0&𝛽+𝛼&−1@1&y2&𝛼+𝛽)| Applying R3 → R3 − R1 = (α + β + 𝛾)(β – α) |■8(1&a2&β+𝛾@0&𝛽+𝛼&−1@𝟏−𝟏&y2−𝛼2&𝛼+𝛽−𝛽−𝛾)| = (α + β + 𝛾)(β – α) |■8(1&a2&β+𝛾@0&(𝛽+𝛼)&−1@𝟎&(𝛾−𝛼)(𝛾+𝛼)&−(𝛾−𝛼))| Taking (𝛾 – α) common from R3 = (α + β + 𝛾)(β – α) (𝛾 – α) |■8(1&a2&β+𝛾@0&𝛽+𝛼&−1@0&𝛾+𝛼&−1)| Expanding determinant along C1 = (α + β + 𝛾)(β – α) (𝛾 – α)(1|■8(𝛽+𝛼&−1@𝛾+𝛼&−1)|−0|■8(𝛼2&𝛽+𝛾@𝛾+𝛼&−1)|+0|■8(𝛼2&𝛽+𝛾@𝛽+𝛼&−1)|) = (α + β + 𝛾)(β – α) (𝛾 – α)(1|■8(𝛽+𝛼&−1@𝛾+𝛼&−1)|−0+0) = (α + β + 𝛾)(β – α) (𝛾 – α) ( – (β + α ) + (𝛾 + α) – 0 + 0) = (α + β + 𝛾)(β – α) (𝛾 – α) (–β – α + 𝛾 + α) = (α + β + 𝛾)(β – α) (𝛾 – α) ( – β + 𝛾) = (α + β + 𝛾)(β – α) (𝛾 – α) (𝛾 – β) = (α + β + 𝛾)(β – α) (𝛾 – α) (β – 𝛾) = (α + β + 𝛾)(–(α –β)) (–(α – 𝛾)) (β – 𝛾) = (α + β + 𝛾) (α – β) (α – 𝛾) (β – 𝛾) = R.H.S Hence Proved

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo