Misc 5 - Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Misc 5 (Method 1) Evaluate |โ 8(๐ฅ&๐ฆ&๐ฅ+๐ฆ@๐ฆ&๐ฅ+๐ฆ&๐ฅ@๐ฅ+๐ฆ&๐ฅ&๐ฆ)| Let โ = |โ 8(๐ฅ&๐ฆ&๐ฅ+๐ฆ@๐ฆ&๐ฅ+๐ฆ&๐ฅ@๐ฅ+๐ฆ&๐ฅ&๐ฆ)| = ๐ฅ[(๐ฅ+๐ฆ)๐ฆโ๐ฅ^2 ]โ๐ฆ[๐ฆ^2โ๐ฅ(๐ฅ+๐ฆ)]+(๐ฅ+๐ฆ)[๐ฅ๐ฆโ(๐ฅ+๐ฆ)^2 ] = ๐ฅ[๐ฅ๐ฆ+๐ฆ^2โ๐ฅ^2 ]โ๐ฆ[๐ฆ^2โ๐ฅ^2โ๐ฅ๐ฆ]+(๐ฅ+๐ฆ)[๐ฅ๐ฆโ๐ฅ^2โ๐ฆ^2โ2๐ฅ๐ฆ] = ๐[๐๐+๐^๐โ๐^๐ ]โ๐[๐^๐โ๐^๐โ๐๐]+(๐+๐)[โ๐^๐โ๐^๐โ๐๐] = ๐ฅ^2 ๐ฆ+๐ฅ๐ฆ^2โ๐ฅ^3โ๐ฆ^3+๐ฅ^2 ๐ฆ+๐ฅ๐ฆ^2โ๐ฅ^3โ๐ฅ๐ฆ^2โ๐ฅ^2 ๐ฆโ๐ฅ^2 ๐ฆโ๐ฆ[๐ฆ^2โ๐ฅ^2โ๐ฅ๐ฆ]+(๐ฅ+๐ฆ)[โ๐ฅ^2โ๐ฆ^2โ๐ฅ๐ฆ] = ๐[๐๐+๐^๐โ๐^๐ ]โ๐[๐^๐โ๐^๐โ๐๐]+(๐+๐)[โ๐^๐โ๐^๐โ๐๐] = ๐ฅ^2 ๐ฆ+๐ฅ๐ฆ^2โ๐ฅ^3โ๐ฆ^3+๐ฅ^2 ๐ฆ+๐ฅ๐ฆ^2โ๐ฅ^3โ๐ฅ๐ฆ^2โ๐ฅ^2 ๐ฆโ๐ฅ^2 ๐ฆโ๐ฆ^3โ๐ฅ๐ฆ^2 = ๐ฅ^2 ๐ฆ+๐ฅ๐ฆ^2โ๐ฅ^3โ๐ฆ^3+๐ฅ^2 ๐ฆ+๐ฅ๐ฆ^2โ๐ฅ^3โ๐ฅ๐ฆ^2โ๐ฅ^2 ๐ฆโ๐ฅ^2 ๐ฆโ๐ฆ^3โ๐ฅ๐ฆ^2 = โ2๐ฅ^3โ2๐ฆ^3 = โ 2(x3+y3) Hence , โ = โ 2(๐ฑ๐+๐ฒ๐) Misc 5 (Method 2) Evaluate |โ 8(๐ฅ&๐ฆ&๐ฅ+๐ฆ@๐ฆ&๐ฅ+๐ฆ&๐ฅ@๐ฅ+๐ฆ&๐ฅ&๐ฆ)| Let โ = |โ 8(๐ฅ&๐ฆ&๐ฅ+๐ฆ@๐ฆ&๐ฅ+๐ฆ&๐ฅ@๐ฅ+๐ฆ&๐ฅ&๐ฆ)| Applying R1โ R1 + R2 + R3 = |โ 8(๐ฅ+๐ฆ+๐ฅ+๐ฆ&๐ฆ+๐ฅ+๐ฆ+๐ฅ&๐ฅ+๐ฆ+๐ฅ+๐ฆ@๐ฆ&๐ฅ+๐ฆ&๐ฅ@๐ฅ+๐ฆ&๐ฅ&๐ฆ)| = |โ 8(2x+2y&2x+2y&2x+2y@y&x+y&x@x+y&x&y)| = |โ 8(๐(๐ฑ+๐ฒ)&๐(๐ฑ+๐ฒ)&๐(๐ฑ+๐ฒ)@y&x+y&x@x+y&x&y)| Taking common 2(x + y), from R1 = ๐(๐ฑ+๐ฒ) |โ 8(1&1&1@y&x+y&x@x+y&x&y)| Applying C2โ C2 โ C1 = 2(x+y) |โ 8(1&๐โ๐&1@y&x+yโ๐ฆ&x@x+y&xโxโy&y)| = 2(x+y) |โ 8(1&๐&1@y&x&x@x+y&โy&y)| Applying C3 โC3 โ C1 = 2(x+y) |โ 8(1&0&๐โ๐@y&x&xโy@x+y&โy&yโ(x+y))| = 2(x+y) |โ 8(1&0&๐@y&x&xโy@x+y&โy&โx)| Expanding determinant along R1 = 2(x+y) (1|โ 8(๐ฅ&๐ฅโ๐ฆ@โ๐ฆ&โ๐ฅ)|โ0|โ 8(๐ฆ&๐ฅโ๐ฆ@๐ฅ+๐ฆ&โ๐ฅ)|+0|โ 8(๐ฆ&๐ฅ@๐ฅ+๐ฆ&โ๐ฆ)|) = 2(x+y) (1|โ 8(๐ฅ&๐ฅโ๐ฆ@โ๐ฆ&โ๐ฅ)|โ0+0) = 2(x+y) (1( โ x2 โ ( โy) (x โ y)) ) = 2(x+y) ( โ x2 + y (x โ y)) = 2(x+y) ( โ x2 + xy โ y2) = โ 2(x+y) ( x2 + y2 โ xy) = โ 2(x3+y3) Hence , โ = โ 2(๐ฑ๐+๐ฒ๐)
Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5 You are here
Misc 6
Misc 7 Important
Misc 8 (MCQ)
Misc 9 (MCQ) Important
Matrices and Determinants - Formula Sheet and Summary Important
Question 1 Important
Question 2
Question 3
Question 4 Important
Question 5 Important
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo