Check sibling questions

 


Transcript

Misc 5 (Method 1) Evaluate |โ– 8(๐‘ฅ&๐‘ฆ&๐‘ฅ+๐‘ฆ@๐‘ฆ&๐‘ฅ+๐‘ฆ&๐‘ฅ@๐‘ฅ+๐‘ฆ&๐‘ฅ&๐‘ฆ)| Let โˆ† = |โ– 8(๐‘ฅ&๐‘ฆ&๐‘ฅ+๐‘ฆ@๐‘ฆ&๐‘ฅ+๐‘ฆ&๐‘ฅ@๐‘ฅ+๐‘ฆ&๐‘ฅ&๐‘ฆ)| = ๐‘ฅ[(๐‘ฅ+๐‘ฆ)๐‘ฆโˆ’๐‘ฅ^2 ]โˆ’๐‘ฆ[๐‘ฆ^2โˆ’๐‘ฅ(๐‘ฅ+๐‘ฆ)]+(๐‘ฅ+๐‘ฆ)[๐‘ฅ๐‘ฆโˆ’(๐‘ฅ+๐‘ฆ)^2 ] = ๐‘ฅ[๐‘ฅ๐‘ฆ+๐‘ฆ^2โˆ’๐‘ฅ^2 ]โˆ’๐‘ฆ[๐‘ฆ^2โˆ’๐‘ฅ^2โˆ’๐‘ฅ๐‘ฆ]+(๐‘ฅ+๐‘ฆ)[๐‘ฅ๐‘ฆโˆ’๐‘ฅ^2โˆ’๐‘ฆ^2โˆ’2๐‘ฅ๐‘ฆ] = ๐’™[๐’™๐’š+๐’š^๐Ÿโˆ’๐’™^๐Ÿ ]โˆ’๐’š[๐’š^๐Ÿโˆ’๐’™^๐Ÿโˆ’๐’™๐’š]+(๐’™+๐’š)[โˆ’๐’™^๐Ÿโˆ’๐’š^๐Ÿโˆ’๐’™๐’š] = ๐‘ฅ^2 ๐‘ฆ+๐‘ฅ๐‘ฆ^2โˆ’๐‘ฅ^3โˆ’๐‘ฆ^3+๐‘ฅ^2 ๐‘ฆ+๐‘ฅ๐‘ฆ^2โˆ’๐‘ฅ^3โˆ’๐‘ฅ๐‘ฆ^2โˆ’๐‘ฅ^2 ๐‘ฆโˆ’๐‘ฅ^2 ๐‘ฆโˆ’๐‘ฆ[๐‘ฆ^2โˆ’๐‘ฅ^2โˆ’๐‘ฅ๐‘ฆ]+(๐‘ฅ+๐‘ฆ)[โˆ’๐‘ฅ^2โˆ’๐‘ฆ^2โˆ’๐‘ฅ๐‘ฆ] = ๐’™[๐’™๐’š+๐’š^๐Ÿโˆ’๐’™^๐Ÿ ]โˆ’๐’š[๐’š^๐Ÿโˆ’๐’™^๐Ÿโˆ’๐’™๐’š]+(๐’™+๐’š)[โˆ’๐’™^๐Ÿโˆ’๐’š^๐Ÿโˆ’๐’™๐’š] = ๐‘ฅ^2 ๐‘ฆ+๐‘ฅ๐‘ฆ^2โˆ’๐‘ฅ^3โˆ’๐‘ฆ^3+๐‘ฅ^2 ๐‘ฆ+๐‘ฅ๐‘ฆ^2โˆ’๐‘ฅ^3โˆ’๐‘ฅ๐‘ฆ^2โˆ’๐‘ฅ^2 ๐‘ฆโˆ’๐‘ฅ^2 ๐‘ฆโˆ’๐‘ฆ^3โˆ’๐‘ฅ๐‘ฆ^2 = ๐‘ฅ^2 ๐‘ฆ+๐‘ฅ๐‘ฆ^2โˆ’๐‘ฅ^3โˆ’๐‘ฆ^3+๐‘ฅ^2 ๐‘ฆ+๐‘ฅ๐‘ฆ^2โˆ’๐‘ฅ^3โˆ’๐‘ฅ๐‘ฆ^2โˆ’๐‘ฅ^2 ๐‘ฆโˆ’๐‘ฅ^2 ๐‘ฆโˆ’๐‘ฆ^3โˆ’๐‘ฅ๐‘ฆ^2 = โˆ’2๐‘ฅ^3โˆ’2๐‘ฆ^3 = โˆ’ 2(x3+y3) Hence , โˆ† = โ€“ 2(๐ฑ๐Ÿ‘+๐ฒ๐Ÿ‘) Misc 5 (Method 2) Evaluate |โ– 8(๐‘ฅ&๐‘ฆ&๐‘ฅ+๐‘ฆ@๐‘ฆ&๐‘ฅ+๐‘ฆ&๐‘ฅ@๐‘ฅ+๐‘ฆ&๐‘ฅ&๐‘ฆ)| Let โˆ† = |โ– 8(๐‘ฅ&๐‘ฆ&๐‘ฅ+๐‘ฆ@๐‘ฆ&๐‘ฅ+๐‘ฆ&๐‘ฅ@๐‘ฅ+๐‘ฆ&๐‘ฅ&๐‘ฆ)| Applying R1โ†’ R1 + R2 + R3 = |โ– 8(๐‘ฅ+๐‘ฆ+๐‘ฅ+๐‘ฆ&๐‘ฆ+๐‘ฅ+๐‘ฆ+๐‘ฅ&๐‘ฅ+๐‘ฆ+๐‘ฅ+๐‘ฆ@๐‘ฆ&๐‘ฅ+๐‘ฆ&๐‘ฅ@๐‘ฅ+๐‘ฆ&๐‘ฅ&๐‘ฆ)| = |โ– 8(2x+2y&2x+2y&2x+2y@y&x+y&x@x+y&x&y)| = |โ– 8(๐Ÿ(๐ฑ+๐ฒ)&๐Ÿ(๐ฑ+๐ฒ)&๐Ÿ(๐ฑ+๐ฒ)@y&x+y&x@x+y&x&y)| Taking common 2(x + y), from R1 = ๐Ÿ(๐ฑ+๐ฒ) |โ– 8(1&1&1@y&x+y&x@x+y&x&y)| Applying C2โ†’ C2 โ€“ C1 = 2(x+y) |โ– 8(1&๐Ÿโˆ’๐Ÿ&1@y&x+yโˆ’๐‘ฆ&x@x+y&xโˆ’xโˆ’y&y)| = 2(x+y) |โ– 8(1&๐ŸŽ&1@y&x&x@x+y&โˆ’y&y)| Applying C3 โ†’C3 โ€“ C1 = 2(x+y) |โ– 8(1&0&๐Ÿโˆ’๐Ÿ@y&x&xโˆ’y@x+y&โˆ’y&yโˆ’(x+y))| = 2(x+y) |โ– 8(1&0&๐ŸŽ@y&x&xโˆ’y@x+y&โˆ’y&โˆ’x)| Expanding determinant along R1 = 2(x+y) (1|โ– 8(๐‘ฅ&๐‘ฅโˆ’๐‘ฆ@โˆ’๐‘ฆ&โˆ’๐‘ฅ)|โˆ’0|โ– 8(๐‘ฆ&๐‘ฅโˆ’๐‘ฆ@๐‘ฅ+๐‘ฆ&โˆ’๐‘ฅ)|+0|โ– 8(๐‘ฆ&๐‘ฅ@๐‘ฅ+๐‘ฆ&โˆ’๐‘ฆ)|) = 2(x+y) (1|โ– 8(๐‘ฅ&๐‘ฅโˆ’๐‘ฆ@โˆ’๐‘ฆ&โˆ’๐‘ฅ)|โˆ’0+0) = 2(x+y) (1( โ€“ x2 โ€“ ( โ€“y) (x โ€“ y)) ) = 2(x+y) ( โ€“ x2 + y (x โ€“ y)) = 2(x+y) ( โ€“ x2 + xy โ€“ y2) = โ€“ 2(x+y) ( x2 + y2 โ€“ xy) = โˆ’ 2(x3+y3) Hence , โˆ† = โ€“ 2(๐ฑ๐Ÿ‘+๐ฒ๐Ÿ‘)

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo