Last updated at Dec. 16, 2024 by Teachoo
Misc 4 (i) Let A = [■8(1&−2&1@−2&3&1@1&1&5)] verify that (i) [adj A]-1 = adj (A-1) First we will calculate adj (A) & A-1 adj A 〖"= " [■8(A_11&A_12&A_13@A_21&A_22&A_23@A_31&A_32&A_33 )]〗^′= [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] A = [■8(1&−2&1@−2&3&1@1&1&5)] M11 = |■8(3&1@1&5)| = 15 – 1 = 14 M12 = |■8(−2&1@1&5)| = – 10 – 1 = – 11 M13 = |■8(−2&3@1&1)| = – 2 – 3 = – 5 M21 = |■8(−2&1@1&5)| = – 10 – 4 = – 11 M22 = |■8(1&1@1&5)| = 5 – 1 = 4 M23 = |■8(1&−2@1&1)| = 1 + 2 = 3 M31 = |■8(−2&1@3&1)| = – 2 – 3 = – 5 M32 = |■8(1&1@−2&1)| = 1 + 2 = 3 M33 = |■8(1&−2@−2&3)| = 3 – 4 = – 5 A11 = (–1)1 + 1 M11 = (–1)2 –14 = 14 A12 = (–1)1+2 M12 = (–1)3 (–11) = 11 A13 = (–1)1+3 M13 = (–1)4 (–5) = –5 A21 = (–1)2+1 M21 = (–1)3 . (–11) = 11 A22 = (–1)2+2 M22= (–1)4 . 4 = 4 A23 = (–1)2+3 M23 = (–1)5 (3) = – 3 A31 = (–1)3+1 M31 = (–1)4 . (–5) = – 5 A32 = (–1)3+2 M32 = (–1)5 . (3) = – 3 A33 = (–1)3+3 M33= (–1)6 . (–5) = –1 Thus, adj (A) = [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] = [■8(𝟏𝟒&𝟏𝟏&−𝟓@𝟏𝟏&𝟒&−𝟑@−𝟓&−𝟑&−𝟏)] Now, A-1 = 1/(|A|) adj (B) Finding |A| |A| = |■8(1&−2&1@−2&3&1@1&1&5)| = 1 (15 – 1) + 2 ( – 10 – 1) + 1 ( – 2 – 3) = 14 – 22 – 5 = – 13 Therefore A-1 = 1/(|A|) adj (A) = 𝟏/𝟏𝟑 [■8(𝟏𝟒&𝟏𝟏&−𝟓@𝟏𝟏&𝟒&−𝟑@−𝟓&−𝟑&−𝟏)] We need to verify 〖"[adj A] " 〗^(−1) = adj (A-1) Solving L.H.S (adj A)-1 Let B = adj (A) B = [■8(14&11&−5@11&4&−3@−5&−3&−1)] Now, B-1 = 1/(|B|) adj (B) exists if |B| ≠ 0 |B| = |■8(14&11&−5@11&4&−3@−5&−3&−1)| = 14 ( – 4 – 9) +1 ( – 11 – 15) – 5 ( – 33 + 20) = 14( – 13) – 11 ( – 26) – 5( – 13) = – 182 + 286 + 65 = 169 Thus |B| = 169 ≠ 0 ∴ B-1 exist Now, calculating adj B adj B 〖"= " [■8(A_11&A_12&A_13@A_21&A_22&A_23@A_31&A_32&A_33 )]〗^′= [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] Here Aij are the cofactors of matrix B B = [■8(14&11&−5@11&4&−3@−5&−3&−1)] M11 = |■8(4&−3@−3&−1)| = – 4 – 9 = – 13 M12 = |■8(11&−3@−5&−1)| = – 11 – 15 = – 26 M13 = |■8(11&4@−5&−3)| = – 33 + 20 = – 13 M21 = |■8(11&−5@−3&−1)| = – 11 – 15 = – 26 M22 = |■8(14&−5@−5&−1)| = – 14 – 25 = – 39 M23 = |■8(14&11@−5&−3)| = ( – 42 + 55) = + 13 M31 = |■8(11&−5@4&−3)| = – 33 – 20 = – 13 M32 = |■8(14&5@−11&3)| = – 42 + 55 = 13 M33 = |■8(14&11@−11&4)| = 56 – 121 = – 65 A11 = ( – 1)1 + 1 M11 = ( – 1)2 (– 13) = – 13 A12 = ( – 1)1+2 M12 = ( – 1)3 ( – 26) = 26 A13 = ( – 1)1+3 M13 = ( – 1)4 . ( – 13) = – 13 A21 = ( – 1)2+1 M21 = ( – 1)3 . ( – 26) = 26 A22 = ( – 1)2+2 M22= ( – 1)4 . ( – 39) = – 39 A23 = ( – 1)2+3 M23 = ( – 1)5 . ( – 13) = – 13 A31 = ( – 1)3+1 M31 = ( – 1)4 . ( – 13) = – 13 A32 = ( – 1)3+2 M32 = ( – 1)5 . (13) = – 13 A33 = ( – 1)3+3 M33 = ( – 1)6 . ( – 65) = – 65 Thus, adj B = [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] = [■8(−13&26&13@26&−39&−13@−13&−13&−65)] Now, B-1 = 1/(|B|) (adj B) = 1/169 [■8(−13&26&13@26&−39&−13@−13&−13&−65)] Taking 13 common from all elements of the matrix = 𝟏𝟑/169 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = 1/13 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] Thus, [adj A] -1 = B-1 = 𝟏/𝟏𝟑 [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] Solving R.H.S adj (A-1) A-1 = 1/13 [■8(−14&−11&5@−11&−4&3@5&3&1)] Let C = A-1 C = 1/13 [■8(−14&−11&5@−11&−4&3@5&3&1)] = [■8((−14)/13&(−11)/13&5/13@(−11)/13&(−4)/13&3/13@5/13&3/13&1/13)] Now, adj C = adj (A-1) adj C 〖"= " [■8(A_11&A_12&A_13@A_21&A_22&A_23@A_31&A_32&A_33 )]〗^′ = [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] Here Aij are the cofactors of matrix C C = [■8((−14)/13&(−11)/13&5/13@(−11)/13&(−4)/13&3/13@5/13&3/13&1/13)] M11 = |■8((−4)/13&(−3)/13@3/13&1/13)| = (−4)/169 – 9/169 = (−13)/169 = (−1)/13 M12 = |■8((−11)/13&3/13@5/13&1/13)| = (−11)/169 – 15/169 = (−26)/169 = (−2)/13 M13 = |■8((−11)/13&(−4)/13@5/13&3/13)| = (−33)/169 + 20/169 = (−13)/169 = (−1)/13 M21 = |■8((−11)/13&5/13@3/13&1/13)| = (−11)/169 – 55/169 = (−26)/169 = (−2)/13 M22 = |■8((−14)/13&5/13@5/13&1/13)| = (−14)/169 – 25/169 = (−39)/169 = (−3)/13 M23 = |■8((−14)/13&(−11)/13@5/13&3/13)| = ((−42)/169 + 55/169) = 13/169 = 1/13 M31 = |■8((−11)/13&5/13@(−4)/13&3/13)| = (−33)/169 + 20/167 = (−13)/169 = (−1)/169 M32 = |■8((−14)/13&5/13@(−11)/13&3/13)| = (−42)/169 + 55/169 = 13/169 = 1/13 M33 = |■8((−14)/13&(−11)/13@(−11)/13&(−4)/13)| = 56/169 – (−121)/169 = (−65)/169 = (−5)/13 A11 = ( – 1)1 + 1 M11 = ( – 1)2 ((−1)/13) = (−1)/13 A12 = ( – 1)1+2 M12 = ( – 1)3 ((−2)/13) = 2/13 A13 = ( – 1)1+3 M13 = ( – 1)4 .(−1)/13 = (−1)/13 A21 = ( – 1)2+1 M21 = ( – 1)3 . ((−2)/13) = 2/13 A22 = ( – 1)2+2 M22 = ( – 1)4 . ((−3)/13) = (−3)/13 A23 = ( – 1)2+3 M23 = ( – 1)5 . (1/13) = (−1)/13 A31 = ( – 1)3+1 M31 = ( – 1)4 . ((−1)/169) = (−1)/13 A32 = ( – 1)3+2 M32 = ( – 1)5 . (1/13 ) = (−1)/13 A33 = (– 1)3+3 M33 = ( – 1)6 . ( (−5)/13) = (−5)/13 Thus, adj C = [■8((−1)/13&2/13&(−1)/13@2/13&(−3)/13&(−1)/13@(−1)/13&(−1)/13&(−5)/13)] = 1/13 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] ∴ adj (A-1) = adj C = 𝟏/𝟏𝟑 [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = R.H.S Hence L.H.S = R.H.S ∴ 〖"(adj A)" 〗^(−1) = adj (A-1) Misc 4 (ii) Let A = [■8(1&−2&1@−2&3&1@1&1&5)] verify that (ii) (A-1)-1 = A We have to find (A-1)-1 So, (A-1)-1 = 1/(|A^(−1) |) adj (A-1) From First part, A-1 = 𝟏/𝟏𝟑 [■8(−𝟏𝟒&−𝟏𝟏&𝟓@−𝟏𝟏&−𝟒&𝟑@𝟓&𝟑&𝟏)] Calculating |A-1| |A-1| = |𝟏/𝟏𝟑 " " [■8(−𝟏𝟒&−𝟏𝟏&𝟓@−𝟏𝟏&−𝟒&𝟑@𝟓&𝟑&𝟏)]| = (1/13)^3 (−14|■8(−4" " &3@3&1)|−(−11)|■8(−11&3@5&1)|+5|■8(−11&−4@5&3)|) = (1/13)^3( –14 ( – 4 – 9) + 11 ( – 11 – 15) + 5 ( – 33 + 20)) =〖 (1/13)〗^3( –14 ( – 13) + 11 ( – 26) + 5 ( – 13)) = (1/13)^3(182 – 286 – 65) = (1/13)^3( – 169) = (−169)/(13 ×13 ×13) = 𝟏/(−𝟏𝟑) Now, (A-1)-1 = 1/(|A^(−1) |) (adj A-1) Putting values = 1/((−1)/13) × 𝟏/𝟏𝟑 [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = –13 × 1/13 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = – [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = A Thus, (A-1)-1 = A Hence Proved Now, (A-1)-1 = 1/(|A^(−1) |) (adj A-1) Putting values = 1/((−1)/13) × 𝟏/𝟏𝟑 [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = –13 × 1/13 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = – [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = A Thus, (A-1)-1 = A Hence Proved
Miscellaneous
Misc 2
Misc 3 Important
Misc 4 You are here
Misc 5
Misc 6
Misc 7 Important
Misc 8 (MCQ)
Misc 9 (MCQ) Important
Matrices and Determinants - Formula Sheet and Summary Important
Question 1 Important
Question 2
Question 3
Question 4 Important
Question 5 Important
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo