Check sibling questions


Transcript

Misc 4 (i) Let A = [■8(1&−2&1@−2&3&1@1&1&5)] verify that (i) [adj A]-1 = adj (A-1) First we will calculate adj (A) & A-1 adj A 〖"= " [■8(A_11&A_12&A_13@A_21&A_22&A_23@A_31&A_32&A_33 )]〗^′= [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] A = [■8(1&−2&1@−2&3&1@1&1&5)] M11 = |■8(3&1@1&5)| = 15 – 1 = 14 M12 = |■8(−2&1@1&5)| = – 10 – 1 = – 11 M13 = |■8(−2&3@1&1)| = – 2 – 3 = – 5 M21 = |■8(−2&1@1&5)| = – 10 – 4 = – 11 M22 = |■8(1&1@1&5)| = 5 – 1 = 4 M23 = |■8(1&−2@1&1)| = 1 + 2 = 3 M31 = |■8(−2&1@3&1)| = – 2 – 3 = – 5 M32 = |■8(1&1@−2&1)| = 1 + 2 = 3 M33 = |■8(1&−2@−2&3)| = 3 – 4 = – 5 A11 = (–1)1 + 1 M11 = (–1)2 –14 = 14 A12 = (–1)1+2 M12 = (–1)3 (–11) = 11 A13 = (–1)1+3 M13 = (–1)4 (–5) = –5 A21 = (–1)2+1 M21 = (–1)3 . (–11) = 11 A22 = (–1)2+2 M22= (–1)4 . 4 = 4 A23 = (–1)2+3 M23 = (–1)5 (3) = – 3 A31 = (–1)3+1 M31 = (–1)4 . (–5) = – 5 A32 = (–1)3+2 M32 = (–1)5 . (3) = – 3 A33 = (–1)3+3 M33= (–1)6 . (–5) = –1 Thus, adj (A) = [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] = [■8(𝟏𝟒&𝟏𝟏&−𝟓@𝟏𝟏&𝟒&−𝟑@−𝟓&−𝟑&−𝟏)] Now, A-1 = 1/(|A|) adj (B) Finding |A| |A| = |■8(1&−2&1@−2&3&1@1&1&5)| = 1 (15 – 1) + 2 ( – 10 – 1) + 1 ( – 2 – 3) = 14 – 22 – 5 = – 13 Therefore A-1 = 1/(|A|) adj (A) = 𝟏/𝟏𝟑 [■8(𝟏𝟒&𝟏𝟏&−𝟓@𝟏𝟏&𝟒&−𝟑@−𝟓&−𝟑&−𝟏)] We need to verify 〖"[adj A] " 〗^(−1) = adj (A-1) Solving L.H.S (adj A)-1 Let B = adj (A) B = [■8(14&11&−5@11&4&−3@−5&−3&−1)] Now, B-1 = 1/(|B|) adj (B) exists if |B| ≠ 0 |B| = |■8(14&11&−5@11&4&−3@−5&−3&−1)| = 14 ( – 4 – 9) +1 ( – 11 – 15) – 5 ( – 33 + 20) = 14( – 13) – 11 ( – 26) – 5( – 13) = – 182 + 286 + 65 = 169 Thus |B| = 169 ≠ 0 ∴ B-1 exist Now, calculating adj B adj B 〖"= " [■8(A_11&A_12&A_13@A_21&A_22&A_23@A_31&A_32&A_33 )]〗^′= [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] Here Aij are the cofactors of matrix B B = [■8(14&11&−5@11&4&−3@−5&−3&−1)] M11 = |■8(4&−3@−3&−1)| = – 4 – 9 = – 13 M12 = |■8(11&−3@−5&−1)| = – 11 – 15 = – 26 M13 = |■8(11&4@−5&−3)| = – 33 + 20 = – 13 M21 = |■8(11&−5@−3&−1)| = – 11 – 15 = – 26 M22 = |■8(14&−5@−5&−1)| = – 14 – 25 = – 39 M23 = |■8(14&11@−5&−3)| = ( – 42 + 55) = + 13 M31 = |■8(11&−5@4&−3)| = – 33 – 20 = – 13 M32 = |■8(14&5@−11&3)| = – 42 + 55 = 13 M33 = |■8(14&11@−11&4)| = 56 – 121 = – 65 A11 = ( – 1)1 + 1 M11 = ( – 1)2 (– 13) = – 13 A12 = ( – 1)1+2 M12 = ( – 1)3 ( – 26) = 26 A13 = ( – 1)1+3 M13 = ( – 1)4 . ( – 13) = – 13 A21 = ( – 1)2+1 M21 = ( – 1)3 . ( – 26) = 26 A22 = ( – 1)2+2 M22= ( – 1)4 . ( – 39) = – 39 A23 = ( – 1)2+3 M23 = ( – 1)5 . ( – 13) = – 13 A31 = ( – 1)3+1 M31 = ( – 1)4 . ( – 13) = – 13 A32 = ( – 1)3+2 M32 = ( – 1)5 . (13) = – 13 A33 = ( – 1)3+3 M33 = ( – 1)6 . ( – 65) = – 65 Thus, adj B = [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] = [■8(−13&26&13@26&−39&−13@−13&−13&−65)] Now, B-1 = 1/(|B|) (adj B) = 1/169 [■8(−13&26&13@26&−39&−13@−13&−13&−65)] Taking 13 common from all elements of the matrix = 𝟏𝟑/169 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = 1/13 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] Thus, [adj A] -1 = B-1 = 𝟏/𝟏𝟑 [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] Solving R.H.S adj (A-1) A-1 = 1/13 [■8(−14&−11&5@−11&−4&3@5&3&1)] Let C = A-1 C = 1/13 [■8(−14&−11&5@−11&−4&3@5&3&1)] = [■8((−14)/13&(−11)/13&5/13@(−11)/13&(−4)/13&3/13@5/13&3/13&1/13)] Now, adj C = adj (A-1) adj C 〖"= " [■8(A_11&A_12&A_13@A_21&A_22&A_23@A_31&A_32&A_33 )]〗^′ = [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] Here Aij are the cofactors of matrix C C = [■8((−14)/13&(−11)/13&5/13@(−11)/13&(−4)/13&3/13@5/13&3/13&1/13)] M11 = |■8((−4)/13&(−3)/13@3/13&1/13)| = (−4)/169 – 9/169 = (−13)/169 = (−1)/13 M12 = |■8((−11)/13&3/13@5/13&1/13)| = (−11)/169 – 15/169 = (−26)/169 = (−2)/13 M13 = |■8((−11)/13&(−4)/13@5/13&3/13)| = (−33)/169 + 20/169 = (−13)/169 = (−1)/13 M21 = |■8((−11)/13&5/13@3/13&1/13)| = (−11)/169 – 55/169 = (−26)/169 = (−2)/13 M22 = |■8((−14)/13&5/13@5/13&1/13)| = (−14)/169 – 25/169 = (−39)/169 = (−3)/13 M23 = |■8((−14)/13&(−11)/13@5/13&3/13)| = ((−42)/169 + 55/169) = 13/169 = 1/13 M31 = |■8((−11)/13&5/13@(−4)/13&3/13)| = (−33)/169 + 20/167 = (−13)/169 = (−1)/169 M32 = |■8((−14)/13&5/13@(−11)/13&3/13)| = (−42)/169 + 55/169 = 13/169 = 1/13 M33 = |■8((−14)/13&(−11)/13@(−11)/13&(−4)/13)| = 56/169 – (−121)/169 = (−65)/169 = (−5)/13 A11 = ( – 1)1 + 1 M11 = ( – 1)2 ((−1)/13) = (−1)/13 A12 = ( – 1)1+2 M12 = ( – 1)3 ((−2)/13) = 2/13 A13 = ( – 1)1+3 M13 = ( – 1)4 .(−1)/13 = (−1)/13 A21 = ( – 1)2+1 M21 = ( – 1)3 . ((−2)/13) = 2/13 A22 = ( – 1)2+2 M22 = ( – 1)4 . ((−3)/13) = (−3)/13 A23 = ( – 1)2+3 M23 = ( – 1)5 . (1/13) = (−1)/13 A31 = ( – 1)3+1 M31 = ( – 1)4 . ((−1)/169) = (−1)/13 A32 = ( – 1)3+2 M32 = ( – 1)5 . (1/13 ) = (−1)/13 A33 = (– 1)3+3 M33 = ( – 1)6 . ( (−5)/13) = (−5)/13 Thus, adj C = [■8((−1)/13&2/13&(−1)/13@2/13&(−3)/13&(−1)/13@(−1)/13&(−1)/13&(−5)/13)] = 1/13 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] ∴ adj (A-1) = adj C = 𝟏/𝟏𝟑 [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = R.H.S Hence L.H.S = R.H.S ∴ 〖"(adj A)" 〗^(−1) = adj (A-1) Misc 4 (ii) Let A = [■8(1&−2&1@−2&3&1@1&1&5)] verify that (ii) (A-1)-1 = A We have to find (A-1)-1 So, (A-1)-1 = 1/(|A^(−1) |) adj (A-1) From First part, A-1 = 𝟏/𝟏𝟑 [■8(−𝟏𝟒&−𝟏𝟏&𝟓@−𝟏𝟏&−𝟒&𝟑@𝟓&𝟑&𝟏)] Calculating |A-1| |A-1| = |𝟏/𝟏𝟑 " " [■8(−𝟏𝟒&−𝟏𝟏&𝟓@−𝟏𝟏&−𝟒&𝟑@𝟓&𝟑&𝟏)]| = (1/13)^3 (−14|■8(−4" " &3@3&1)|−(−11)|■8(−11&3@5&1)|+5|■8(−11&−4@5&3)|) = (1/13)^3( –14 ( – 4 – 9) + 11 ( – 11 – 15) + 5 ( – 33 + 20)) =〖 (1/13)〗^3( –14 ( – 13) + 11 ( – 26) + 5 ( – 13)) = (1/13)^3(182 – 286 – 65) = (1/13)^3( – 169) = (−169)/(13 ×13 ×13) = 𝟏/(−𝟏𝟑) Now, (A-1)-1 = 1/(|A^(−1) |) (adj A-1) Putting values = 1/((−1)/13) × 𝟏/𝟏𝟑 [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = –13 × 1/13 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = – [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = A Thus, (A-1)-1 = A Hence Proved Now, (A-1)-1 = 1/(|A^(−1) |) (adj A-1) Putting values = 1/((−1)/13) × 𝟏/𝟏𝟑 [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = –13 × 1/13 [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = – [■8(−1&2&−1@2&−3&−1@−1&−1&−5)] = [■8(−𝟏&𝟐&−𝟏@𝟐&−𝟑&−𝟏@−𝟏&−𝟏&−𝟓)] = A Thus, (A-1)-1 = A Hence Proved

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo