Check sibling questions


Transcript

Question 4 Prove that |โ– 8(a2&bc&ac+c2@a2+ab&b2&ac@ab&b2+bc&c2)| = 4a2b2c2 Solving L.H.S |โ– 8(a2&bc&ac+c2@a2+ab&b2&ac@ab&b2+bc&c2)| = |โ– 8(๐š(๐‘Ž)&๐›(c)&๐œ(a+c)@๐š(๐‘Ž+๐‘)&๐›(b)&๐œ(a)@๐š(๐‘)&๐›(b+c)&๐œ(c))| Taking out a common from C1 ,b common from C2 & c common from C3 = abc |โ– 8(a&c&a+c@๐‘Ž+๐‘&b&a@๐‘&b+c&c)| Applying C1โ†’ C1 + C2 + C3 = abc |โ– 8(a+๐‘+๐‘Ž+๐‘&c&a+c@๐‘Ž+๐‘+๐‘+๐‘Ž&b&a@๐‘+๐‘+๐‘+๐‘&b+c&c)| = abc |โ– 8(2a+2๐‘&c&a+c@2a+2๐‘&b&a@2๐‘+2๐‘&b+c&c)| = abc |โ– 8(๐Ÿ(๐‘Ž+๐‘)&c&a+c@๐Ÿ(๐‘Ž+๐‘)&b&a@๐Ÿ(๐‘+๐‘)&b+c&c)| Taking out 2 Common from C2 = 2a๐‘๐‘|โ– 8((๐‘Ž+๐‘)&c&a+c@(๐‘Ž+๐‘)&b&a@(๐‘+๐‘)&b+c&c)| Applying C3โ†’ C3 โ€“ C1 = 2a๐‘๐‘|โ– 8((๐‘Ž+๐‘)&c&a+cโˆ’(๐š+๐œ)@(๐‘Ž+๐‘)&b&aโˆ’(a+b)@(๐‘+๐‘)&b+c&cโˆ’(b+c))| = 2a๐‘๐‘|โ– 8(๐‘Ž+๐‘&c&๐ŸŽ@๐‘Ž+๐‘&b&โˆ’๐‘@๐‘+๐‘&b+c&โˆ’b)| Applying C2โ†’ C2 โ€“ C1 = 2abc |โ– 8(๐‘Ž+๐‘&cโˆ’(๐‘Ž+๐‘)&0@๐‘Ž+๐‘&bโˆ’(๐‘Ž+๐‘)&โˆ’b@๐‘+๐‘&b+cโˆ’(๐‘+๐‘)&โˆ’b)| = 2abc |โ– 8(๐‘Ž+๐‘&โˆ’๐’‚&0@๐‘Ž+๐‘&โˆ’๐’‚&โˆ’๐›@๐‘+๐‘&0&โˆ’๐›)| Taking out โ€“a common from C2, โ€“b common from C3 = 2abc (โ€“a) (โ€“b) |โ– 8(๐‘Ž+๐‘&1&0@๐‘Ž+๐‘&1&1@๐‘+๐‘&0&1)| Expanding Determinant along R1 = 2a2b2c ((a+c)|โ– 8(1&1@0&1)|โˆ’1|โ– 8(๐‘Ž+๐‘&1@๐‘+๐‘&1)|+0|โ– 8(๐‘Ž+๐‘&1@๐‘+๐‘&0)|) = 2a2b2c ((a+c)|โ– 8(1&1@0&1)|โˆ’1|โ– 8(๐‘Ž+๐‘&1@๐‘+๐‘&1)|+0) = 2a2b2c ((a + c) (1 โ€“ 0) โ€“ 1(a + b โ€“ (b + c))) = 2a2b2c ((a + c) (1) โ€“ 1 (a + b โ€“ b โ€“ c)) = 2a2b2c (a + c โ€“ a + c) = 2a2b2c (2c) = 4a2b2c = R.H.S Hence proved

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo