Question 2 - Miscellaneous - Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 2 If a, b and c are real numbers, and ∆ = b+cc+aa+bc+aa+bb+ca+bb+cc+a = 0 , Show that either a + b + c = 0 or a = b = c Solving ∆ ∆ = b+cc+aa+bc+aa+bb+ca+bb+cc+a Applying R1→ R1 + R2 + R3 = b+c+c+a+a+b𝑐+𝑎+𝑎+𝑏+𝑏+𝑐a+b+b+c+c+a𝑐+𝑎a+bb+c𝑎+𝑏b+cc+a = 𝟐(𝐚+𝐛+𝐜)𝟐(𝐚+𝐛+𝐜)𝟐(𝐚+𝐛+𝐜)𝑐+𝑎a+bb+c𝑎+𝑏b+cc+a Taking Common 2(𝑎+𝑏+𝑐) From R1 = 𝟐(𝐚+𝐛+𝐜) 111𝑐+𝑎a+bb+c𝑎+𝑏b+cc+a Applying C2→ C2 – C1 = 2(a+b+c) 1𝟏−𝟏1𝑐+𝑎a+b−c−ab+c𝑎+𝑏b+c−a−bc+a = 2(a+b+c) 1𝟎1𝑐+𝑎a−cb+c𝑎+𝑏c−ac+a Applying C3→ C3 – C1 = 2(a+b+c) 10𝟏−𝟏𝑐+𝑎b−cb+c−c−a𝑎+𝑏c−ac+a−a−b = 2(a+b+c) 10𝟎𝑐+𝑎b−cb−a𝑎+𝑏c−ac−b Expanding determinant along R1 = 2(a+b+c) 1 𝑏−𝑐𝑏−𝑎𝑐−𝑎𝑐−𝑏−0 𝑐+𝑎𝑏−𝑎𝑎+𝑏𝑐−𝑏+0 𝑐+𝑎𝑏−𝑐𝑎+𝑏𝑐−𝑎 = 2(a+b+c) 1 𝑏−𝑐𝑏−𝑎𝑐−𝑎𝑐−𝑏−0+0 = 2(a+b+c) ((c – b) (b – c) – (b – a) (c – a)) = 2(a+b+c) ( – (c – b) (c – b) – (bc – ab – ac + a2)) = 2(a+b+c) ( – (c – b)2 – (bc – ab – ac + a2)) = 2(a+b+c) ( – (c2 + b2 – 2cd) – bc + ab + ac – a2) = 2(a+b+c) ( – c2 – b2 + 2cb – bc + ab + ac – a2) = 2(a+b+c) ( – (a2 + b2 + c2) + ab + bc + ac) ∴ ∆ = 2(a+b+c) ( – (a2 + b2 + c2) + ab + bc + ac) Given ∆ = 0 2(a+b+c) ( – (a2 + b2 + c2) + ab + bc + ac) = 0 So, either (a + b + c) = 0 or a = b = c Hence proved
Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5
Misc 6
Misc 7 Important
Misc 8 (MCQ)
Misc 9 (MCQ) Important
Matrices and Determinants - Formula Sheet and Summary Important
Question 1 Important
Question 2 You are here
Question 3
Question 4 Important
Question 5 Important
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo