Check sibling questions


Transcript

Question 1 Without expanding the determinant, prove that |■8(a&a2&bc@b&b2&ca@c&c2&ab)| = |■8(1&a2&a3@1&b2&b3@1&c2&c3)| Solving L.H.S |■8(a&a2&bc@b&b2&ca@c&c2&ab)| Multiplying and dividing by abc = abc/abc |■8(a&a2&bc@b&b2&ca@c&c2&ab)| Multiplying a to R1, b to R2 & c to R3 = 1/abc |■8(a(𝑎)&𝑎(a2)&a(bc)@b(𝑏)&b(b2)&b (ca)@c(𝑐)&𝑐(c2)&c (ab))| Multiplying a to R1, b to R2 & c to R3 = 1/abc |■8(a(𝑎)&𝑎(a2)&a(bc)@b(𝑏)&b(b2)&b (ca)@c(𝑐)&𝑐(c2)&c (ab))| = 1/abc |■8(a2&a3&𝑎𝑏𝑐@b2&b3&𝑎𝑏𝑐@c2&c3&𝑎𝑏𝑐)| Taking abc common from C3 = 𝑎𝑏𝑐/𝑎𝑏𝑐 |■8(a2&a3&1@b2&b3&1@c2&c3&1)| = |■8(a2&a3&1@b2&b3&1@c2&c3&1)| Interchange C1 ↔ C3 = (–1) |■8(1&a3&a2@1&b3&b2@1&c3&c2)| Interchange C2 ↔ C3 = (–1) (–1) |■8(1&a2&a3@1&b2&b3@1&c2&c3)| = |■8(1&a2&a3@1&b2&b3@1&c2&c3)| = R.H.S. Hence Proved We know that If any two row or column of a determinant are interchanged, then sign of determinant changes.

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo