Check sibling questions

 


Transcript

Question 8 By using properties of determinants, show that: (i) |โ– 8(1&๐‘Ž&๐‘Ž2@1&๐‘&๐‘2@1&๐‘&๐‘2)| = (a - b) (b - c)(c โ€“ a) Solving L.H.S |โ– 8(1&๐‘Ž&๐‘Ž2@1&๐‘&๐‘2@1&๐‘&๐‘2)| Applying R1 โ†’ R1 โˆ’ R2 = |โ– 8(๐Ÿโˆ’๐Ÿ&๐‘Žโˆ’๐‘&๐‘Ž^2โˆ’๐‘^2@1&๐‘&๐‘2@1&๐‘&๐‘2 ) | = |โ– 8(๐ŸŽ&(๐‘Žโˆ’๐‘)&(๐‘Žโˆ’๐‘)(๐‘Ž+๐‘)@1&๐‘&๐‘2@1&๐‘&๐‘2 ) | = |โ– 8(0(๐šโˆ’๐›)&(๐šโˆ’๐›)&(๐šโˆ’๐’ƒ)(a+b)@1&b&b2@1&c&c2 ) | Taking Common (a โ€“ b) from R1 = (๐šโˆ’๐’ƒ) |โ– 8(0&1&a+b@1&b&b2@1&c&c2 ) | Applying R2 โ†’ R2 โˆ’ R3 = (aโˆ’b) |โ– 8(0&1&a+b@๐Ÿโˆ’๐Ÿ&bโˆ’c&b2โˆ’c2@1&c&c2 ) | = (a โ€“ b) |โ– 8(0&1&a+๐‘@๐ŸŽ&bโˆ’c&(bโˆ’c)(b+c)@1&c&c2 ) | Taking common (b โ€“ c) from R2 = (a โ€“ b) (b โ€“ c) |โ– 8(0&1&a+b@0&1&b+c@1&c&c2 ) | Expanding Determinant along C1 = (a โ€“ b) (b โ€“ c) ( 0|โ– 8(1&๐‘+๐‘@๐‘&๐‘2)|โˆ’0|โ– 8(1&๐‘Ž+๐‘@๐‘&๐‘2)|+1|โ– 8(1&๐‘Ž+๐‘@1&๐‘+๐‘)|) = (a โ€“ b) (b โ€“ c) ( 0โˆ’0+1|โ– 8(1&๐‘Ž+๐‘@1&๐‘+๐‘)|) = (a โ€“ b) (b โ€“ c) (1(b + c) โ€“ 1(a + b) ) = (a โ€“ b) (b โ€“ c) (b + c โ€“ a โ€“ b) = (a โ€“ b) (b โ€“ c)(c โ€“ a) = R.H.S Hence Proved

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo