Check sibling questions


Transcript

Question 2 Using the property of determinants and without expanding, prove that: |■8(a−b&b−c&c−𝑎@b−c&c−a&a−b@c−a&a−b&b−c)| = 0 |■8(a−b&b−c&c−𝑎@b−c&c−a&a−b@c−a&a−b&b−c)| Making first row 0 by Applying R1 →R1 + R2 + R3 = |■8(a−b+b−c+c−a&b−c+c−a+a−b&c−a+a−b+b−c@b−c&c−a&a−b@c−a&a−b&b−c)| = |■8(0&0&0@b−c&c−a&a−b@c−a&a−b&b−c)| = 0 |■8(c−a&a−b@a−b&b−c)| – 0 |■8(b−c&a−b@c−a&b−c)| + 0 |■8(b−c&c−a@c−a&a−b)| = 0 – 0 + 0 = 0 = R.H.S Thus, L.H.S = R.H.S Hence proved

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo