Check sibling questions


Transcript

Ex 10.1, 8 Find the centre and radius of the circle x2 + y2 – 8x + 10y – 12 = 0 Given x2 + y2 – 8x + 10y – 12 = 0. We need to make this in form (x – h)2 + (y – k)2 = r2 From (1) x2 + y2 – 8x + 10y – 12 = 0 x2 – 8x + y2 + 10y – 12 = 0 (x2 – 8x) + (y2 + 10y) − 12 = 0 [x2 – 2(x)(4)] + [y2 + 2(y)(5)] − 12 = 0 [x2 – 2(x)(4) + 42 − 42] + [y2 + 2(y)(5) + 52 − 52] – 12 = 0 [x2 – 2(x)(4) + 42] + [y2 + 2(y)(5) + 52 ] − 42 − 52 – 12 = 0 Using (a − b)2 = a2 + b2 − 2ab (x – 4)2 + (y + 5)2 − 16 − 25 − 12 = 0 (x – 4)2 + (y + 5)2 = 16 + 25 + 12 (x – 4)2 + (y + 5)2 = 53 (x – 4)2 + (y − (−5))2 = 53 Comparing (2) & (3) h = 4, k = −5 & r2 = 53 r = √53 Centre (h, k) = (4, −5) & Radius = r = √𝟓𝟑

  1. Chapter 10 Class 11 Conic Sections
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo