Last updated at Dec. 16, 2024 by Teachoo
Example 22 If a, b, c are in G.P. and "a" ^(1/๐ฅ) = "b" ^(1/๐ฆ) = "c" ^(1/๐ง) , prove that x, y, z are in A.P. Given that "a" ^(1/๐ฅ) = "b" ^(1/๐ฆ) = "c" ^(1/๐ง) Let "a" ^(1/๐ฅ) = "b" ^(1/๐ฆ) = "c" ^(1/๐ง) = k Now, "a" ^(1/๐ฅ) = k Taking power x both sides ("a" ^(1/๐ฅ) )^๐ฅ = ใ"(k)" ใ^๐ฅ "a" ^(๐ฅ ร 1/๐ฅ) = "k" ^๐ฅ a = "k" ^๐ฅ Also, "b" ^(1/๐ฆ) = k Taking power y both sides ("b" ^(1/๐ฆ) )^๐ฆ = ใ"(k)" ใ^๐ฆ "b" ^(๐ฆ ร 1/๐ฆ) = "k" ^๐ฆ b= "k" ^๐ฆ Similarly, "c" ^(1/๐ง) = k Taking power z both sides ("c" ^(1/๐ง) )^๐ง = ใ"(k)" ใ^๐ง "c" ^(๐ง ร 1/๐ง) = "k" ^๐ง c = "k" ^๐ง Thus, a = "k" ^๐ฅ , b = "k" ^๐ฆ & c = "k" ^๐ง It is given that a, b & c are in GP So, ratio will be the same ๐/๐ = ๐/๐ b2 = ac putting value of a, b & c from (1) ("k" ^๐ฆ )^2 = "k" ^๐ฅ "k" ^๐ง "k" ^2๐ฆ = "k" ^(๐ฅ+๐ง) Comparing powers 2y = x + z We need to show x, y & z are in AP i.e. we need to show that their common difference is same i.e. we need to show y โ x = z โ y y + y = z + x 2y = z + x And we have proved in (2) that 2y = z + x Hence, x, y & z are in A.P. Hence proved
Examples
Example 1 (ii)
Example 2
Example 3 Important
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important
Example 11
Example 12 Important
Example 13 Important
Example 14 You are here
Question 1
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6 Important
Question 7
Question 8 Important
Question 9
Question 10 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo