Example 8 - Chapter 8 Class 11 Sequences and Series
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Example 8, How many terms of the G.P. 3, 3/2, 3/4 , , ,... are needed to give the sum 3069/512 ? Here First term = a = 3, Common ratio r = (3/2)/3 = 3/(2 3) = 1/2 We know that sum of n term = ( ( 1 ^ ))/(1 ) Sn = (a(1 ^ ))/(1 r) Given that Sn = 3069/512 & we need to find n. 3069/512 = (a(1 ^ ))/(1 ) 3069/512 = (3[1 (1/2)^ ])/(1 1/2) 3069/512 =(3[1 (1/2)^ ])/( 1/2) 3069/512 = 6[1 (1/2)^ ] 3069/(512 6) = 1 (1/2)^ 3069/3072 = 1 (1/2)^ 1 (1/2)^ = 3069/3072 " " (1/2)^ " = " ("1 " 3069/3072) (1/2)^ = ((3072 3069)/3072) (1/2)^ = (3/3072) (1/2)^ = (1/1024) (1/2)^ = (1/2)10 Comparing powers n = 10 Hence 10 terms are needed to give sum 3069/512
Examples
Example 1 (ii)
Example 2
Example 3 Important
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8 You are here
Example 9 Important
Example 10 Important
Example 11
Example 12 Important
Example 13 Important
Example 14
Question 1
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6 Important
Question 7
Question 8 Important
Question 9
Question 10 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo