Last updated at Dec. 16, 2024 by Teachoo
Question23 Prove the following by using the principle of mathematical induction for all n N: 41n 14n is a multiple of 27. Introduction If a number is multiple of 27, then it will come in table of 27 27 1 = 27 27 2 = 54 27 3 = 71 Any number multiple of 27 = 27 Natural number Question23 Prove the following by using the principle of mathematical induction for all n N: 41n 14n is a multiple of 27. Let P(n):41n 14n = 27d , where d N For n=1, L.H.S = 411 141 = 41 14 = 27 = 27 1 = R.H.S P(n) is true for n = 1 Assume P(k) is true 41k 14k = 27m, where m N We will prove that P(k + 1) is true L.H.S = 41k+1 14k+1 = 41k . 411 14k . 141 = 41k . 41 14k . 14 = (27m + 14k) 41 14k . 14 = 41 27m + 41 14k 14k . 14 = 41 27m + 14k (41 14) = 41 27m + 14k (27) = 27 (41m 14k) = 27 r, where r = (41m 14k ) is a natural number P(k + 1) is true whenever P(k) is true. By the principle of mathematical induction, P(n) is true for n, where n is a natural number
Mathematical Induction - Questions and Solutions
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9
Question 10
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16 Important
Question 17 Important
Question 18 Important
Question 19
Question 20
Question 21 Important
Question 22
Question 23 Important You are here
Question 24 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo