Check sibling questions

Find an acute angle θ when cos⁡θ - sin⁡θ/cos⁡θ  + sin⁡θ  = 1+ √3/1 + √3

 


Transcript

Question 25 (Choice 2) Find an acute angle θ when (cos⁡θ − sin⁡θ)/(cos⁡θ + sin⁡θ ) = (1 − √3)/(1 + √3)Given (cos⁡θ − sin⁡θ)/(cos⁡θ + sin⁡θ ) = (1 − √3)/(1 + √3) Cross multiplying (1 + √3) (cos θ − sin θ) = (1 − √3) (cos θ + sin θ) 1 (cos θ − sin θ) + √3(cos θ − sin θ) = 1 (cos θ + sin θ) − √3 (cos θ + sin θ) cos θ − sin θ + √3cos θ − √𝟑 sin θ = cos θ + sin θ − √3cos θ − √𝟑sin θ − sin θ + √3cos θ = sin θ − √3cos θ √3cos θ + √3cos θ = sin θ + sin θ 2√𝟑cos θ = 2 sin θ √3cos θ = sin θ √3 = sin⁡〖θ 〗/cos⁡〖θ 〗 tan θ = √3 Since tan 60° = (cos⁡θ − sin⁡θ)/(cos⁡θ + sin⁡θ ) = (1 − √3)/ So, the correct answer is (c) √3 = sin⁡〖θ 〗/cos⁡〖θ 〗 tan θ = √𝟑 Since tan 60° = √3 Therefore, θ = 60°

  1. Class 10
  2. Solutions of Sample Papers for Class 10 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo