Check sibling questions

Using the properties of determinants, prove that

| (y + z) 2   x 2   x 2   y 2 (z + x) 2 y 2   z 2   z 2 (x + y) 2 | = 2xyz (x + y + z) 3

 


Transcript

Question 33 (OR 1st Question) Using the properties of determinants, prove that [ (y + z)2 x2 x2 y2 (z + x)2 y2 z2 z2 (x + y)2 ] 2xyz (x + y + z)3 [ (y + z)2 x2 x2 y2 (z + x)2 y2 z2 z2 (x + y)2 ] Applying C2 -> C2 - C1 = | (y + z)2 x2 - (y + z)2 x2 y2 (z + x)2 - y2 y2 z2 z2 - z2 (x + y)2 = | y + z |2 (x - (y + z)) (x + (y + z)) x2 y2 ((z + x) - y ((z + x ) + y y2 z2 0 (x + y)2 = | (y + z)2 (x - y - z) (x + y + z) x2 y2 (x + z - y) (x + y + z) y2 z2 0 (x + y)2 Applying C3-> C3 - C1 | (y + z)2 (x - y - z) (x + y + z) x2 - (y + z)2 y2 (x + z - y) (x + y + z) y2 - y2 z2 0 (x + y)2 - z2 = (y + z)2 (x - y - z) (x + y + z) (x - (y + z) (x + (y + z) y2 (x + z - y) (x + y + z) 0 z2 0 ((x + y) - z) ((x + y) + z) = | (y + z)2 (x - y - z) (x + y + z) (x - y - z) (x + y + z) y2 (x + z - y) (x + y + z) 0 z2 0 (x + y - z) (x + y + z) Taking (x + y + z) common from both c2 and c3 = (x + y + z)2 | (y + z)2 (x - y - z) (x - y - z) y2 (x + z - y) 0 z2 0 (x + y - z) Applying R1 -> R1 - R2 = (x + y + z)2 | (y + z)2 - y2 (x - y - z) - (x + z - y) (x - y - z) - 0 y2 (x + z - y) 0 z2 0 (x + y - z) = (x + y + z)2 | (y + z) - y (y + z) + y) -2z (x - y - z) y2 (x + z - y) 0 z2 0 (x + y - z) = (x + y + z)2 | z (2y + z) - 2z (x - y - z) y2 (x + z - y) 0 z2 0 (x + y - z) = (x + y + z)2 | 2yz2 - z2 (x - y - z) y2 (x + z - y) 0 z2 0 (x + y - z) Applying R1 -> R1 - R3 = (x + y + z)2 | 2yz +z2 - Z2 -2z - 0 (x - y - z) - (x + y - z) y2 (x + z - y) 0 z2 0 (x + y - z) = (x + y + z)2 |2yz -2z -2y y2 (x + z - y) 0 z2 0 (x + y - z) Applying C2 -> C2 + 1/y + C1 = (x + y + z) | 2yz -2z + 1/y + 2yz -2y y2 (x + z - y) + 1/y x y2 0 z2 0 + 1/y + z2 (x + y - z) = (x + y + z) | 2yz -2z + 2z -2y y2 (x + z - y) + y 0 z2 z2/y (x + y - z) | Applying C3 -> C3 + 1/z + C1 = (x + y + z )2 | 2yz 0 -2y + 1/z + 2yz y2 (x + z) 0 + 1/z x y2 z2 z2/y (x + y - z) + 1/z x z2 = (x + y + z)2 | 2yz 0 -2y + 2y y2 (x + z) y2/z z2 z2/y (x + y - z) + z = (x + y + z)2 |2yz 0 0 y2 (x + z) y2/z z2 z2/y (x + y) | Expanding Determinant along R1 = (𝑥 + 𝑦 + 𝑧)^2 × [𝟐𝒚𝒛 ((𝒙 + 𝒛)(𝒙 + 𝒚) − 𝒛^𝟐/𝒚 × 𝒚^𝟐/𝒛) − 𝟎 − 𝟎] = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑦𝑧 ((𝑥 + 𝑧)(𝑥 + 𝑦) − 𝑧𝑦) = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑦𝑧 (𝑥(𝑥 + 𝑦) + 𝑧(𝑥 + 𝑦) − 𝑧𝑦) = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑦𝑧 (𝑥^2 + 𝑥𝑦 + 𝑧𝑥 + 𝑧𝑦 − 𝑧𝑦) = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑦𝑧 (𝑥^2 + 𝑥𝑦 + 𝑧𝑥) = (𝑥 + 𝑦 + 𝑧)^2 × 2𝑥𝑦𝑧 × (𝑥 + 𝑦 + 𝑧) = 2𝑥𝑦𝑧(𝑥 + 𝑦 + 𝑧)^3 Hence proved

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo