To do this question, first check Two digit number and its reverse .
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Solving difficult equations
Question 2 Important Deleted for CBSE Board 2024 Exams
Question 3 Deleted for CBSE Board 2024 Exams You are here
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 7 Important Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Solving difficult equations
Last updated at May 29, 2023 by Teachoo
To do this question, first check Two digit number and its reverse .
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Question 3 Sum of the digits of a two-digit number is 9. When we interchange the digits, it is found that the resulting new number is greater than the original number by 27. What is the two-digit number?Let original number be ab Let the digit at tens place = a & digit at units place = b Given that Sum of digits of a 2-digit number = 9 a + b = 9 b = 9 a Original Number ab Digit at units place = b = 9 a Digit at tens place = a Original number = (10 Digit at tens place) + (1 Digit at units place) = (10 a) + (1 (9 a)) = 10a + 9 a = 9a + 9 Reverse number ba Digit at units place = a Digit at tens place = b = 9 a Resulting number = (10 Digit at tens place) + (1 Digit at units place) = 10 (9 a) + (1 a) = 90 10a + a = 90 9a Hence, Original number = 9a + 9 Resulting number = 90 9a Given that, Resulting number is greater than original number by 27. Resulting number = Original number + 27 (90 9a) = (9a + 9) + 27 90 9a = 9a + 9 + 27 90 27 9 = 9a + 9a 54 = 18a 54/18 = a 3 = a a = 3 Therefore, Digit at tens place = a = 3 & Digit at units place = b = 9 a = 9 3 = 6 Hence, Original number = 36