



Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Examples
Example 2
Example 3 Important
Example 4
Example 5 Important
Example 6 (Normal Method)
Example 6 (Shortcut Method) Important
Example 7 Important
Example 8
Example 9 Important
Example 10 Important
Example 11
Example 12 Important
Example 13 Deleted for CBSE Board 2023 Exams
Example 14 Important Deleted for CBSE Board 2023 Exams
Example 15 Important Deleted for CBSE Board 2023 Exams You are here
Example 16
Example 17 Important
Example 18
Example 19 Important
Last updated at May 24, 2022 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Example 15 The following values are calculated in respect of heights and weights of the students of a section of Class XI : Can we say that the weights show greater variation than the heights? To compare the variation, we have to calculate coefficient of variation Coefficient of variation(C.V.) = 100 Variance of height = 127.69 cm2 Standard deviation of height = = 127.69 = 127.69 = 12769 100 = 113 2 10 2 = 113 10 2 = 113 10 = 11.3 cm Variance of weight = 23.1361 kg2 Standard deviation of weight ( weight) = = 23.1361 = 231361 10000 = 231361 10000 = 481 2 100 2 = 481 100 2 = 481 100 = 4.81 kg Now, calculating Coefficient of variation C.V. in height = 100 = 11.3 162.6 100 = 6.95 C.V. in weight = 100 = 4.81 52.36 100 = 9.18 Since, C.V. in weights is greater than the C.V. in heights Therefore, we can say that weights show more variability than heights