ย  ย  ย  Example 42 - Evaluate x dx / a2 cos2 x + b2 sin2 x - Examples - Examples

part 2 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 6 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 7 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Example 42 Evaluate โˆซ_0^๐œ‹โ–’(๐‘ฅ ๐‘‘๐‘ฅ)/(๐‘Ž^2 cos^2โกใ€–๐‘ฅ + ๐‘^2 ใ€— sin^2โก๐‘ฅ )Let I= โˆซ_0^๐œ‹โ–’ใ€–๐‘ฅ/(๐‘Ž^2 ๐‘๐‘œ๐‘ ^2 ๐‘ฅ + ๐‘^2 ๐‘ ๐‘–๐‘›^2 ๐‘ฅ) ๐‘‘๐‘ฅใ€— โˆด I=โˆซ_0^๐œ‹โ–’ใ€–((๐œ‹ โˆ’ ๐‘ฅ))/(๐‘Ž^2 ๐‘๐‘œ๐‘ ^2 (๐œ‹ โˆ’ ๐‘ฅ) + ๐‘^2 ๐‘ ๐‘–๐‘›^2 (๐œ‹ โˆ’ ๐‘ฅ) ) ๐‘‘๐‘ฅใ€— I=โˆซ_0^๐œ‹โ–’ใ€–(๐œ‹ โˆ’ ๐‘ฅ)/(๐‘Ž^2 [๐‘๐‘œ๐‘ (๐œ‹ โˆ’ ๐‘ฅ)]^2 + ๐‘^2 [๐‘ ๐‘–๐‘›(๐œ‹ โˆ’ ๐‘ฅ)]^2 ) ๐‘‘๐‘ฅใ€— I=โˆซ_0^๐œ‹โ–’ใ€–(๐œ‹ โˆ’ ๐‘ฅ)/(๐‘Ž^2 [โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ]^2 + ๐‘^2 [๐‘ ๐‘–๐‘› ๐‘ฅ]^2 ) ๐‘‘๐‘ฅใ€— I=โˆซ_0^๐œ‹โ–’ใ€–(๐œ‹ โˆ’ ๐‘ฅ)/(๐‘Ž^2 cos^2โก๐‘ฅ + ๐‘^2 sin^2โก๐‘ฅ ) ๐‘‘๐‘ฅใ€— Adding (1) and (2) i.e. (1) + (2) I+I=โˆซ_0^๐œ‹โ–’ใ€–๐‘ฅ/(๐‘Ž^2 cos^2โก๐‘ฅ + ๐‘^2 sin^2โก๐‘ฅ ) ๐‘‘๐‘ฅใ€—+โˆซ1โ–’(๐œ‹ โˆ’ ๐‘ฅ)/(๐‘Ž^2 cos^2โก๐‘ฅ + ๐‘^2 sin^2โก๐‘ฅ ) ๐‘‘๐‘ฅ 2I=โˆซ_0^๐œ‹โ–’(๐‘ฅ + ๐œ‹ โˆ’ ๐‘ฅ)/(๐‘Ž^2 cos^2โก๐‘ฅ + ๐‘^2 sin^2โก๐‘ฅ ) ๐‘‘๐‘ฅ 2I=โˆซ_0^๐œ‹โ–’(๐œ‹ )/(๐‘Ž^2 cos^2โก๐‘ฅ + ๐‘^2 sin^2โก๐‘ฅ ) ๐‘‘๐‘ฅ I=๐œ‹/2 โˆซ_0^๐œ‹โ–’ใ€–1/(๐‘Ž^2 cos^2โก๐‘ฅ + ๐‘^2 sin^2โก๐‘ฅ ) ๐‘‘๐‘ฅใ€— Dividing numerator and denominator by ๐‘๐‘œ๐‘ ^2 ๐‘ฅ, we get I=๐œ‹/2 โˆซ_0^๐œ‹โ–’ใ€–(1/cos^2โก๐‘ฅ )/((๐‘Ž^2 cos^2โกใ€–๐‘ฅ + ๐‘^2 sin^2โก๐‘ฅ ใ€—)/cos^2โก๐‘ฅ ) ๐‘‘๐‘ฅใ€— I=๐œ‹/2 โˆซ_0^๐œ‹โ–’ใ€–(๐‘ ๐‘’๐‘^2 ๐‘ฅ)/((๐‘Ž^2 cos^2โก๐‘ฅ)/cos^2โก๐‘ฅ + (๐‘^2 sin^2โก๐‘ฅ)/cos^2โก๐‘ฅ ) ๐‘‘๐‘ฅใ€— I=๐œ‹/2 โˆซ_0^๐œ‹โ–’ใ€–(๐‘ ๐‘’๐‘^2 ๐‘ฅ)/(๐‘Ž^2 + ๐‘^2 tan^2โก๐‘ฅ ) ๐‘‘๐‘ฅใ€— Let ๐‘“(๐‘ฅ)=sec^2โก๐‘ฅ/(๐‘Ž^2 + ๐‘^2 tan^2โก๐‘ฅ ) and a = ฯ€ Now, ๐‘“(2๐‘Žโˆ’๐‘ฅ)=sec^2โก(๐œ‹ โˆ’ ๐‘ฅ)/(๐‘Ž^2 + ๐‘^2 tan^2โก(๐œ‹ โˆ’ ๐‘ฅ) ) ๐‘“(2๐‘Žโˆ’๐‘ฅ)=[โˆ’๐‘ ๐‘’๐‘ ๐‘ฅ]^2/(๐‘Ž^2 + ๐‘^2 [โˆ’tanโก๐‘ฅ ]^2 ) ๐‘“(2๐‘Žโˆ’๐‘ฅ)=(๐‘ ๐‘’๐‘^2 ๐‘ฅ)/(๐‘Ž^2 + ๐‘^2 tan^2โก๐‘ฅ ) Therefore, ๐‘“(๐‘ฅ)=๐‘“(2๐‘Žโˆ’๐‘ฅ) Therefore, I=๐œ‹/2 โˆซ_0^๐œ‹โ–’ใ€–(๐‘ ๐‘’๐‘^2 ๐‘ฅ)/(๐‘Ž^2 + ๐‘^2 tan^2โก๐‘ฅ ) ๐‘‘๐‘ฅใ€— =๐œ‹/2 ร— 2 โˆซ_0^(๐œ‹/2)โ–’ใ€–(๐‘ ๐‘’๐‘^2 ๐‘ฅ)/(๐‘Ž^2 + ๐‘^2 tan^2โก๐‘ฅ ) ๐‘‘๐‘ฅใ€— =๐œ‹โˆซ_0^(๐œ‹/2)โ–’ใ€–(๐‘ ๐‘’๐‘^2 ๐‘ฅ)/(๐‘Ž^2 + ๐‘^2 tan^2โก๐‘ฅ ) ๐‘‘๐‘ฅใ€— Let ๐‘ tanโกใ€–๐‘ฅ=๐‘กใ€— Differentiating both sides w.r.t. ๐‘ฅ ๐‘ ๐‘ ๐‘’๐‘^2 ๐‘ฅ ๐‘‘๐‘ฅ=๐‘‘๐‘ก ๐‘‘๐‘ก=๐‘‘๐‘ก/(๐‘^2 ๐‘ ๐‘’๐‘^2 ๐‘ฅ) Putting the values of tan ๐‘ฅ and ๐‘‘๐‘ฅ , we get ๐ผ=๐œ‹โˆซ1_0^(๐œ‹/2)โ–’ใ€–(๐‘ ๐‘’๐‘^2 ๐‘ฅ)/(๐‘Ž^2 + ๐‘ก^2 ) . ๐‘‘๐‘ฅใ€— ๐ผ=๐œ‹ โˆซ1_0^โˆžโ–’ใ€–(๐‘ ๐‘’๐‘^2 ๐‘ฅ)/(๐‘Ž^2 + ๐‘ก^2 ) .๐‘‘๐‘ก/(๐‘ ๐‘ ๐‘’๐‘^2 ๐‘ฅ)ใ€— ๐ผ=๐œ‹/๐‘ โˆซ1_0^โˆžโ–’๐‘‘๐‘ก/(๐‘Ž^2 + ๐‘ก^2 ) ๐ผ= ใ€–๐œ‹/๐‘ [1/๐‘Ž tan^(โˆ’1)โก(๐‘ก/๐‘Ž) ]ใ€—_0^โˆž Putting limits, I=๐œ‹/๐‘ [1/๐‘Ž ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) (โˆž/๐‘Ž)โˆ’1/๐‘Ž ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) (0/๐‘Ž)] I =๐œ‹/๐‘ [ใ€–1/๐‘Ž tan^(โˆ’1)ใ€—โกใ€–(โˆž)โˆ’1/๐‘Ž tan^(โˆ’1)โก(0) ใ€— ] I =๐œ‹/๐‘ (1/๐‘Ž (๐œ‹/2)โˆ’0) I =๐…^๐Ÿ/๐Ÿ๐’‚๐’ƒ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo