Ex 7.11, 8 - Evaluate integral log (1 + tan x) dx - Definate Integration by properties - P4

Slide16.JPG
Slide17.JPG

  1. Class 12
  2. Important Question for exams Class 12
Ask Download

Transcript

Ex 7.11,8 By using the properties of definite integrals, evaluate the integrals : 0﷮ 𝜋﷮4﷯﷮ log﷮ 1+ tan﷮𝑥﷯﷯﷯﷯𝑑𝑥 Let I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 1+ tan﷮𝑥﷯﷯﷯﷯𝑑𝑥 ∴ I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 1+ tan﷮ 𝜋﷮4﷯−𝑥﷯﷯﷯﷯﷯𝑑𝑥 I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 1+ tan﷮ ﷯ 𝜋﷮4﷯ − tan﷮𝑥﷯﷮1 + tan﷮ ﷯ 𝜋﷮4﷯ . tan﷮𝑥﷯﷯﷯﷯﷯𝑑𝑥 I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 1+ 1 − tan﷮𝑥﷯﷮1 + 1 . tan﷮𝑥﷯﷯﷯﷯﷯𝑑𝑥 I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 1 − tan﷮𝑥﷯ + 1 − tan﷮𝑥﷯﷮1 + tan﷮𝑥﷯﷯﷯﷯﷯𝑑𝑥 I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 2﷮1 + tan﷮𝑥﷯﷯﷯﷯﷯𝑑𝑥 I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 2﷯﷯ − log﷮ 1+ tan﷮𝑥﷯﷯﷯﷯﷯𝑑𝑥 I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 2﷯﷯﷯𝑑𝑥− 0﷮ 𝜋﷮4﷯﷮ log﷮ 1+ tan﷮𝑥﷯﷯﷯﷯𝑑𝑥 Adding (1) and (2) i.e. (1) + (2) I+I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 1+ tan﷮𝑥﷯﷯﷯﷯𝑑𝑥+ 0﷮ 𝜋﷮4﷯﷮ log﷮ 2﷯﷯﷯𝑑𝑥− 0﷮ 𝜋﷮4﷯﷮ log﷮ 1+ tan﷮𝑥﷯﷯﷯﷯ 2I= 0﷮ 𝜋﷮4﷯﷮ log﷮ 2﷯﷯﷯𝑑𝑥 2I= log﷮ 2﷯﷯ 0﷮ 𝜋﷮4﷯﷮𝑑𝑥﷯ I= log﷮ 2﷯﷮2﷯ 𝑥﷯﷮0﷮ 𝜋﷮4﷯﷯ I= log﷮2﷯﷮2﷯ 𝜋﷮4﷯ − 0﷯ I= log﷮2﷯﷮2﷯× 𝜋﷮4﷯ 𝑰= 𝝅﷮𝟖﷯ 𝒍𝒐𝒈﷮𝟐﷯

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 7 years. He provides courses for Mathematics and Science from Class 6 to 12. You can learn personally from here https://www.teachoo.com/premium/maths-and-science-classes/.
Jail